Electronic correlations in nodal-line semimetals


Dirac fermions with highly dispersive linear bands1,2,3 are usually considered weakly correlated due to the relatively large bandwidths (W) compared to Coulomb interactions (U). With the discovery of nodal-line semimetals, the notion of the Dirac point has been extended to lines and loops in momentum space. The anisotropy associated with nodal-line structure gives rise to greatly reduced kinetic energy along the line. However, experimental evidence for the anticipated enhanced correlations in nodal-line semimetals is sparse. Here, we report on prominent correlation effects in a nodal-line semimetal compound, ZrSiSe, through a combination of optical spectroscopy and density functional theory calculations. We observed two fundamental spectroscopic hallmarks of electronic correlations: strong reduction (1/3) of the free-carrier Drude weight and also the Fermi velocity compared to predictions of density functional band theory. The renormalization of Fermi velocity can be further controlled with an external magnetic field. ZrSiSe therefore offers the rare opportunity to investigate correlation-driven physics in a Dirac system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electronic structure and optical conductivity of ZrSiSe calculated using an ab initio method.
Fig. 2: The a–b plane optical conductivity of ZrSiSe and SW analysis.
Fig. 3: Landau-level spectroscopy of ZrSiSe.
Fig. 4: Fermi velocity and Drude SW renormalizations for various Dirac materials.

Data availability

Source data for Figs. 14 are available with the online version of this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-T c cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Wehling, T., Black-Schaffer, A. & Balatsky, A. Dirac materials. Adv. Phys. 63, 1–76 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin–orbital coupling. Phys. Rev. B 92, 081201 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Hosen, M. M. et al. Tunability of the topological nodal-line semimetal phase ZrSiX-type materials (X = S, Se, Te). Phys. Rev. B 95, 161101 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Rudenko, A. N., Stepanov, E. A., Lichtenstein, A. I. & Katsnelson, M. I. Excitonic instability and pseudogap formation in nodal line semimetal ZrSiS. Phys. Rev. Lett. 120, 216401 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Mele, E. J. Dowsing for nodal lines in a topological semimetal. Proc. Natl Acad. Sci. USA 116, 1084–1086 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Scherer, M. M. et al. Excitonic instability and unconventional pairing in the nodal-line materials ZrSiS and ZrSiSe. Phys. Rev. B 98, 241112 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Pezzini, S. et al. Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys. 14, 178–183 (2018).

    Article  Google Scholar 

  12. 12.

    Ahn, S., Mele, E. J. & Min, H. Electrodynamics on Fermi cyclides in nodal line semimetals. Phys. Rev. Lett. 119, 147402 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Degiorgi, L. Electronic correlations in iron-pnictide superconductors and beyond: lessons learned from optics. New J. Phys. 13, 023011 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Qazilbash, M. M. et al. Electronic correlations in the iron pnictides. Nat. Phys. 5, 647–650 (2009).

    Article  Google Scholar 

  16. 16.

    Shao, Y. et al. Optical signatures of Dirac nodal lines in NbAs2. Proc. Natl Acad. Sci. USA 116, 1168–1173 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Schilling, M. B., Schoop, L. M., Lotsch, B. V., Dressel, M. & Pronin, A. V. Flat optical conductivity in ZrSiS due to two-dimensional Dirac bands. Phys. Rev. Lett. 119, 187401 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Millis, A. J., Zimmers, A., Lobo, R. P. S. M., Bontemps, N. & Homes, C. C. Mott physics and the optical conductivity of electron-doped cuprates. Phys. Rev. B 72, 224517 (2005).

    ADS  Article  Google Scholar 

  19. 19.

    Schafgans, A. A. et al. Electronic correlations and unconventional spectral weight transfer in the high-temperature pnictide BaFe2 − xCoxAs2 superconductor using infrared spectroscopy. Phys. Rev. Lett. 108, 147002 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    Chen, R. Y. et al. Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac fermions in ZrTe5. Phys. Rev. Lett. 115, 176404 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Akrap, A. et al. Magneto-optical signature of massless Kane electrons in Cd3As2. Phys. Rev. Lett. 117, 136401 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Chen, Z.-G. et al. Two-dimensional massless Dirac fermions in antiferromagnetic AFe2As2 (A = Ba,Sr). Phys. Rev. Lett. 119, 096401 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Shao, Y. et al. Faraday rotation due to surface states in the topological insulator (Bi1 − xSbx)2Te3. Nano Lett. 17, 980–984 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    Article  Google Scholar 

  25. 25.

    Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008).

    Article  Google Scholar 

  26. 26.

    Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Banerjee, S., Abergel, D. S. L., Ågren, H., Aeppli, G. & Balatsky, A. V. Universal trends in interacting two-dimensional Dirac materials Preprint at https://arxiv.org/pdf/1803.11480.pdf (2018).

  28. 28.

    Tang, H.-K. et al. The role of electron–electron interactions in two-dimensional Dirac fermions. Science 361, 570–574 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Orlita, M. et al. Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nat. Phys. 10, 233–238 (2014).

    Article  Google Scholar 

  30. 30.

    Abergel, D. S. L., Apalkov, V., Berashevich, J., Ziegler, K. & Chakraborty, T. Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261–482 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    Orlita, M. et al. Magneto-optics of massive Dirac fermions in bulk Bi2Se3. Phys. Rev. Lett. 114, 186401 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Faugeras, C. et al. Landau level spectroscopy of electron–electron interactions in graphene. Phys. Rev. Lett. 114, 126804 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Syzranov, S. V. & Skinner, B. Electron transport in nodal-line semimetals. Phys. Rev. B 96, 161105 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Gatti, G. et al. Light-induced renormalization of the Dirac quasiparticles in the nodal-line semimetal ZrSiSe. Preprint at https://arxiv.org/pdf/1912.09673.pdf (2019).

  35. 35.

    Wang, J.-R., Liu, G.-Z., Wan, X. & Zhang, C. Quantum criticality of excitonic insulating transition in nodal line semimetal ZrSiS. Preprint at https://arxiv.org/pdf/1910.01450.pdf (2019).

  36. 36.

    Xu, Y. et al. Electronic correlations and flattened band in magnetic Weyl semimetal Co3Sn2S2. Preprint at https://arxiv.org/pdf/1908.04561.pdf (2019).

  37. 37.

    Yang, R. et al. Magnetization-induced band shift in ferromagnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Lett. 124, 077403 (2020).

    ADS  Article  Google Scholar 

  38. 38.

    Hu, W. Z. et al. Origin of the spin density wave instability in AFe2As2 (A = Ba,Sr) as revealed by optical spectroscopy. Phys. Rev. Lett. 101, 257005 (2008).

    ADS  Article  Google Scholar 

  39. 39.

    Guritanu, V. et al. Anisotropic optical conductivity and two colors of MgB2. Phys. Rev. B 73, 104509 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Frenzel, A. J. et al. Anisotropic electrodynamics of type-II Weyl semimetal candidate WTe2. Phys. Rev. B 95, 245140 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Post, K. W. et al. Sum-rule constraints on the surface state conductance of topological insulators. Phys. Rev. Lett. 115, 116804 (2015).

    ADS  Article  Google Scholar 

Download references


Research at Columbia on the optical properties of layered semimetals was supported as part of the Energy Frontier Research Center on Programmable Quantum Materials funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0019443. Research on spin–orbit coupling in intermetallic compounds is funded by ARO grant no. W911nf-17-1-0543. D.N.B. is a Moore Foundation Investigator, EPIQS Initiative grant GBMF4533. The sample synthesis effort is supported by the US DOE under grant no. DE-SC0019068. Y.L.Z. acknowledges financial support from the National Science Foundation through the Penn State 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP) under NSF cooperative agreement DMR-1539916. J.H. acknowledges financial support from the US DOE, Office of Science, Basic Energy Sciences programme under award no. DE-SC0019467. M.I.K. acknowledges financial support from JTCFLAG-ERA project GRANSPORT. The numerical calculations presented in this paper have been partially performed at the Supercomputing Center of Wuhan University. S.M. and D.S. acknowledge support from the US DOE (DE-FG02-07ER46451) for high-field infrared measurements performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative agreement no. DMR-1644779 and the State of Florida.

Author information




Y.S. and D.N.B. conceived the project. Y.S. performed the measurements and analysed the data, with help from A.N.R., Z.S., A.J.M., A.I.L. and M.I.K. A.N.R. performed the ab initio calculations with technical support from S.Y. Z.S. and A.J.M. provided theoretical support. Y.S. performed the high-field infrared measurements with help from S.M. and D.S. J.H., Y.Z. and Z.Q.M. synthesized the ZrSiSe single crystals. Y.S. and D.N.B. wrote the manuscript, with input from all co-authors.

Corresponding authors

Correspondence to Yinming Shao or D. N. Basov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions and Figs. 1–13.

Source data

Source Data Fig. 1

Source data for Fig. 1a,c.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4a.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Rudenko, A.N., Hu, J. et al. Electronic correlations in nodal-line semimetals. Nat. Phys. 16, 636–641 (2020). https://doi.org/10.1038/s41567-020-0859-z

Download citation

Further reading