Abstract
Quantum networks provide unique possibilities for resolving open questions on entanglement1 and promise innovative applications ranging from secure communication to scalable computation2. Although two quantum nodes coupled by a single channel are adequate for basic quantum communication tasks between two parties3, fully functional large-scale quantum networks require a web-like architecture with multiply connected nodes4. Efficient interfaces between network nodes and channels can be implemented with optical cavities5. Using two optical fibre cavities coupled to one atom, we here realize a quantum network node that connects to two quantum channels, one provided by each cavity. It functions as a passive, heralded and high-fidelity quantum memory that requires neither amplitude- and phase-critical control fields6,7,8 nor error-prone feedback loops9. Our node is robust, fits naturally into larger fibre-based networks and has prospects for extensions including qubit-controlled quantum switches10,11, routers12,13 and repeaters14,15.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Telecom quantum photonic interface for a 40Ca+ single-ion quantum memory
npj Quantum Information Open Access 10 April 2023
-
Advances in device-independent quantum key distribution
npj Quantum Information Open Access 18 February 2023
-
Entangling single atoms over 33 km telecom fibre
Nature Open Access 06 July 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Acín, A., Cirac, J. I. & Lewenstein, M. Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).
Gorshkov, A. V., André, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).
Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).
Körber, M. et al. Decoherence-protected memory for a single-photon qubit. Nat. Photon. 12, 18–21 (2018).
Kalb, N., Reiserer, A., Ritter, S. & Rempe, G. Heralded storage of a photonic quantum bit in a single atom. Phys. Rev. Lett. 114, 220501 (2015).
Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).
Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).
Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).
Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Uphoff, M., Brekenfeld, M., Rempe, G. & Ritter, S. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Appl. Phys. B 122, 46 (2016).
Bussières, F. et al. Prospective applications of optical quantum memories. J. Mod. Opt. 60, 1519–1537 (2013).
Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).
Cho, Y.-W. et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).
Wang, Y. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photon. 13, 346–351 (2019).
Borregaard, J., Kómár, P., Kessler, E., Sørensen, A. & Lukin, M. Heralded quantum gates with integrated error detection in optical cavities. Phys. Rev. Lett. 114, 110502 (2015).
Lin, G. W., Zou, X. B., Lin, X. M. & Guo, G. C. Heralded quantum memory for single-photon polarization qubits. EPL 86, 30006 (2009).
Koshino, K., Ishizaka, S. & Nakamura, Y. Deterministic photon–photon \(\sqrt{{\rm{SWAP}}}\) gate using a Λ system. Phys. Rev. A 82, 010301 (2010).
Tanji, H., Ghosh, S., Simon, J., Bloom, B. & Vuletić, V. Heralded single-magnon quantum memory for photon polarization states. Phys. Rev. Lett. 103, 043601 (2009).
Kurz, C. et al. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5, 5527 (2014).
Yang, S. et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat. Photon. 10, 507–511 (2016).
Delteil, A., Sun, Z., Fält, S. & Imamoğlu, A. Realization of a cascaded quantum system: heralded absorption of a single photon qubit by a single-electron charged quantum dot. Phys. Rev. Lett. 118, 177401 (2017).
Bechler, O. et al. A passive photon–atom qubit swap operation. Nat. Phys. 14, 996–1000 (2018).
Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103–107 (2008).
Trautmann, N. & Alber, G. Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter. Phys. Rev. A 93, 053807 (2016).
Hunger, D. et al. A fiber Fabry–Perot cavity with high finesse. New J. Phys. 12, 065038 (2010).
Uphoff, M., Brekenfeld, M., Rempe, G. & Ritter, S. Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities. New J. Phys. 17, 013053 (2015).
Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).
Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).
Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502 (2008).
Morin, O., Körber, M., Langenfeld, S. & Rempe, G. Deterministic shaping and reshaping of single-photon temporal wave functions. Phys. Rev. Lett. 123, 133602 (2019).
Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010).
Albrecht, B., Farrera, P., Fernandez-Gonzalvo, X., Cristiani, M. & de Riedmatten, H. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band. Nat. Commun. 5, 3376 (2014).
Meyer, H. et al. Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015).
Yoo, H. & Eberly, J. H. Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 239–337 (1985).
Acknowledgements
We thank S. Ritter and M. Uphoff for contributions during an early stage of this work and T. Urban for contributions to the design and fabrication of the experimental chamber. This work was supported by the Bundesministerium für Bildung und Forschung via the Verbund Q.Link.X (grant no. 16KIS0870), the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC-2111, 390814868) and the European Union’s Horizon 2020 research and innovation programme via the project Quantum Internet Alliance (GA no. 820445). J.D.C. acknowledges support from the Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed to the experiment, analysis of the results and writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks Lijun Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text and Figs. 1–4.
Source data
Source Data Fig. 1
Plotted data Fig. 1.
Source Data Fig. 3
Plotted data Fig. 3.
Source Data Fig. 4
Plotted data Fig. 4.
Rights and permissions
About this article
Cite this article
Brekenfeld, M., Niemietz, D., Christesen, J.D. et al. A quantum network node with crossed optical fibre cavities. Nat. Phys. 16, 647–651 (2020). https://doi.org/10.1038/s41567-020-0855-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-0855-3
This article is cited by
-
Advances in device-independent quantum key distribution
npj Quantum Information (2023)
-
Telecom quantum photonic interface for a 40Ca+ single-ion quantum memory
npj Quantum Information (2023)
-
Entangling single atoms over 33 km telecom fibre
Nature (2022)
-
Achievements and perspectives of optical fiber Fabry–Perot cavities
Applied Physics B (2022)
-
Nondestructive detection of photonic qubits
Nature (2021)