Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum metasurfaces with atom arrays

An Author Correction to this article was published on 22 April 2020

This article has been updated

Abstract

Metasurfaces mould the flow of classical light waves by engineering subwavelength patterns from dielectric or metallic thin films. We introduce and analyse a method in which quantum operator-valued reflectivity can be used to control both the spatiotemporal and quantum properties of transmitted and reflected light. Such quantum metasurfaces are realized by entangling the macroscopic response of atomically thin atom arrays to light. We show that such a system allows for parallel quantum operations between atoms and photons as well as for the generation of highly entangled photonic states such as photonic Greenberger–Horne–Zeilinger and three-dimensional cluster states suitable for quantum information processing. We analyse the influence of imperfections as well as specific implementations based on atom arrays excited into Rydberg states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparing cat states with quantum metasurfaces.
Fig. 2: Quantum information with quantum metasurfaces.
Fig. 3: QLM for highly entangled free-space photons.
Fig. 4: Error estimation from an experimental considerations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    ADS  Google Scholar 

  2. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    ADS  Google Scholar 

  3. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Google Scholar 

  4. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    ADS  Google Scholar 

  5. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2016).

    ADS  Google Scholar 

  6. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Google Scholar 

  7. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    ADS  Google Scholar 

  8. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Google Scholar 

  9. Krasnok, A., Tymchenko, M. & Alu, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21 (2018).

    Google Scholar 

  10. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Google Scholar 

  11. Mathis, A. et al. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett. 101, 071110 (2012).

    ADS  Google Scholar 

  12. Schley, R. et al. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories. Nat. Commun. 5, 5189 (2014).

    ADS  Google Scholar 

  13. Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the Newton–Schrödinger system. Nat. Phys. 11, 872–878 (2015).

    Google Scholar 

  14. Bettles, R. J., Gardiner, S. A. & Adams, C. S. Enhanced optical cross section via collective coupling of atomic dipoles in a 2D array. Phys. Rev. Lett. 116, 103602 (2016).

    ADS  Google Scholar 

  15. Shahmoon, E., Wild, D. S., Lukin, M. D. & Yelin, S. F. Cooperative resonances in light scattering from two-dimensional atomic arrays. Phys. Rev. Lett. 118, 113601 (2017).

    ADS  Google Scholar 

  16. Zhou, M., Liu, J., Kats, M. A. & Yu, Z. Optical metasurface based on the resonant scattering in electronic transitions. ACS Photonics 4, 1279–1285 (2017).

    Google Scholar 

  17. Facchinetti, G. & Ruostekoski, J. Interaction of light with planar lattices of atoms: reflection, transmission and cooperative magnetometry. Phys. Rev. A 97, 023833 (2018).

    ADS  Google Scholar 

  18. Wang, B., Zhao, C., Kan, Y. & Huang, T. Design of metasurface polarizers based on two-dimensional cold atomic arrays. Opt. Exp. 25, 18760–18773 (2017).

    ADS  Google Scholar 

  19. Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).

    ADS  Google Scholar 

  20. Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    ADS  Google Scholar 

  21. Guimond, P.-O., Grankin, A., Vasilyev, D. V., Vermersch, B. & Zoller, P. Subradiant Bell states in distant atomic arrays. Phys. Rev. Lett. 122, 093601 (2019).

    ADS  Google Scholar 

  22. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    ADS  Google Scholar 

  23. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010).

    ADS  Google Scholar 

  24. Barredo, D. et al. Demonstration of a strong Rydberg blockade in three-atom systems with anisotropic interactions. Phys. Rev. Lett. 112, 183002 (2014).

    ADS  Google Scholar 

  25. Browaeys, A., Barredo, D. & Lahaye, T. Experimental investigations of dipole–dipole interactions between a few Rydberg atoms. J. Phys. B 49, 152001 (2016).

    ADS  Google Scholar 

  26. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Google Scholar 

  27. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    ADS  Google Scholar 

  28. Duan, L.-M. & Kimble, H. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    ADS  Google Scholar 

  29. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Google Scholar 

  30. Varnava, M., Browne, D. E. & Rudolph, T. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006).

    ADS  Google Scholar 

  31. Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 2015, 149 (2015).

    MathSciNet  MATH  Google Scholar 

  32. Grankin, A., Guimond, P., Vasilyev, D., Vermersch, B. & Zoller, P. Free-space photonic quantum link and chiral quantum optics. Phys. Rev. A 98, 043825 (2018).

    ADS  Google Scholar 

  33. Saffman, M. & Walker, T. Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002).

    ADS  Google Scholar 

  34. Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

    ADS  Google Scholar 

  35. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    ADS  Google Scholar 

  36. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    ADS  Google Scholar 

  37. Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007).

    ADS  MathSciNet  Google Scholar 

  38. Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000).

    ADS  Google Scholar 

  39. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    ADS  Google Scholar 

  40. Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  Google Scholar 

  41. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  Google Scholar 

  42. Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    ADS  Google Scholar 

  43. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  Google Scholar 

  44. Lienhard, V. et al. Observing the space-and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X 8, 021070 (2018).

    Google Scholar 

  45. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS  MathSciNet  Google Scholar 

  46. Covey, J. P. et al. Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics. Phys. Rev. Appl. 11, 034044 (2019).

    ADS  Google Scholar 

  47. Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Preprint at https://arxiv.org/pdf/2001.00795.pdf (2020).

  48. Li, L., Dudin, Y. & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013).

    Google Scholar 

  49. Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    Google Scholar 

  50. Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).

    Google Scholar 

  51. Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012).

    ADS  Google Scholar 

  52. Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  53. Lang, J., Chang, D. E. & Piazza, F. Interaction-induced transparency for strong-coupling polaritons. Preprint at https://arxiv.org/pdf/1810.12912.pdf (2018).

  54. J. Lang, J., Chang, D. E. & Piazza, F. Non-equilibrium diagrammatic approach to strongly interacting photons. Preprint at https://arxiv.org/pdf/1810.12921.pdf (2018).

  55. Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    Google Scholar 

  56. Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Oren and A. Omran for helpful discussions. This work was supported by the National Science Foundation (NSF), the Center for Ultracold Atoms, the Air Force Office of Scientific Research via the Multidisciplinary University Research Initiative and the Vannevar Bush Faculty Fellowship. R.B., I.P. and H.P. are supported by the NSF through a grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard University and the Smithsonian Astrophysical Observatory. I.P. also acknowledges funding by Society in Science, The Branco Weiss Fellowship, administered by the ETH Zurich.

Author information

Authors and Affiliations

Authors

Contributions

The theoretical analysis and numerical analysis were carried out by R.B. All authors contributed to the development of theoretical tools, discussed the results and contributed to the manuscript. The manuscript was written by R.B., H.P. and M.D.L.

Corresponding author

Correspondence to R. Bekenstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary analysis, Fig. 1 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekenstein, R., Pikovski, I., Pichler, H. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020). https://doi.org/10.1038/s41567-020-0845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0845-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing