Remote determination of the shape of Jupiter’s vortices from laboratory experiments


Jupiter’s dynamics shapes its cloud patterns but remains largely unknown below this natural observational barrier. Unravelling the underlying three-dimensional flows is thus a primary goal for NASA’s ongoing Juno mission, which was launched in 2011. Here, we address the dynamics of large Jovian vortices using laboratory experiments complemented by theoretical and numerical analyses. We determine the generic force balance responsible for their three-dimensional pancake-like shape. From this, we define scaling laws for their horizontal and vertical aspect ratios as a function of the ambient rotation, stratification and zonal wind velocity. For the Great Red Spot in particular, our predicted horizontal dimensions agree well with measurements at the cloud level since the Voyager mission in 1979. We also predict the Great Red Spot’s thickness, which is inaccessible to direct observation. It has remained surprisingly constant despite the observed horizontal shrinking. Our results now await comparison with upcoming Juno observations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Simplified sketch of the experimental set-up.
Fig. 2: Visualizations in the vortex equatorial plane.
Fig. 3: Predicted and observed evolution of the vortex shape.
Fig. 4: Predicted and measured shape of Jovian anticyclones.
Fig. 5: Observed and predicted evolution of the GRS shape for the last 40 years.

Data availability

The data represented in Figs. 3 and 5b,c are available with the paper as Source Data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Li, C. et al. The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 44, 5317–5325 (2017).

  2. 2.

    Kaspi, Y. et al. Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature 555, 223–226 (2018).

  3. 3.

    Iess, L. et al. Measurement of Jupiter’s asymmetric gravity field. Nature 555, 220–222 (2018).

  4. 4.

    Guillot, T. et al. A suppression of differential rotation in Jupiter’s deep interior. Nature 555, 227–230 (2018).

  5. 5.

    Adriani, A. et al. Clusters of cyclones encircling Jupiter’s poles. Nature 555, 216–219 (2018).

  6. 6.

    Kong, D., Zhang, K., Schubert, G. & Anderson, J. D. Origin of Jupiter’s cloud-level zonal winds remains a puzzle even after Juno. Proc. Natl Acad. Sci. USA 115, 8499–8504 (2018).

  7. 7.

    Debras, F. & Chabrier, G. New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872, 100 (2019).

  8. 8.

    Vasavada, A. R. & Showman, A. P. Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005).

  9. 9.

    Rogers, J. The Giant Planet Jupiter Vol. 6 (Cambridge Univ. Press, 1995).

  10. 10.

    Falorni, M. The discovery of the Great Red Spot of Jupiter. J. Br. Astron. Assoc. 97, 215–219 (1987).

  11. 11.

    Hide, R. Origin of Jupiter’s Great Red Spot. Nature 190, 895–896 (1961).

  12. 12.

    Marcus, P. S. Numerical simulation of Jupiter’s Great Red Spot. Nature 331, 693–696 (1988).

  13. 13.

    Dowling, T. E. & Ingersoll, A. P. Jupiter’s Great Red Spot as a shallow water system. J. Atmos. Sci. 46, 3256–3278 (1988).

  14. 14.

    Williams, G. P. & Wilson, R. J. The stability and genesis of Rossby vortices. J. Atmos. Sci. 45, 207–241 (1988).

  15. 15.

    Dowling, T. E. & Ingersoll, A. P. Potential vorticity and layer thickness variations in the flow around Jupiter’s Great Red Spot and White Oval BC. J. Atmos. Sci. 45, 1380–1396 (1988).

  16. 16.

    Marcus, P. S. Vortex dynamics in a shearing zonal flow. J. Fluid Mech. 215, 393–430 (1990).

  17. 17.

    Read, P. & Hide, R. Long-lived eddies in the laboratory and in the atmospheres of Jupiter and Saturn. Nature 302, 126–129 (1983).

  18. 18.

    Read, P. L. & Hide, R. An isolated baroclinic eddy as a laboratory analogue of the Great Red Spot on Jupiter. Nature 308, 45–48 (1984).

  19. 19.

    Sommeria, J., Meyers, S. D. & Swinney, H. L. Laboratory simulation of Jupiter’s Great Red Spot. Nature 331, 689–693 (1988).

  20. 20.

    Antipov, S. V., Nezlin, M. V., Snezhkin, E. N. & Trubnikov, A. S. Rossby autosoliton and stationary model of the Jovian Great Red Spot. Nature 323, 238–240 (1986).

  21. 21.

    Billant, P. & Chomaz, J.-M. Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 1645–1651 (2001).

  22. 22.

    Carton, X. Hydrodynamical modeling of oceanic vortices. Surveys Geophys. 22, 179–263 (2001).

  23. 23.

    Aubert, O., Le Bars, M., Le Gal, P. & Marcus, P. S. The universal aspect ratio of vortices in rotating stratified flows: experiments and observations. J. Fluid Mech. 706, 34–45 (2012).

  24. 24.

    Hassanzadeh, P., Marcus, P. S. & Le Gal, P. The universal aspect ratio of vortices in rotating stratified flows: theory and simulation. J. Fluid Mech. 706, 46–57 (2012).

  25. 25.

    Mitchell, J. L., Beebe, R. F., Ingersoll, A. P. & Garneau, G. W. Flow fields within Jupiter’s Great Red Spot and White Oval BC. J. Geophys. Res. Space Phys. 86, 8751–8757 (1981).

  26. 26.

    Moore, D. W. & Saffman, P. Aircraft Wake Turbulence and its Detection 339–354 (Springer, 1971).

  27. 27.

    Kida, S. Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Jpn 50, 3517–3520 (1981).

  28. 28.

    Meacham, S. P., Flierl, G. R. & Send, U. Vortices in shear. Dynam. Atmos. Oceans 14, 333–386 (1989).

  29. 29.

    Moffatt, H. K., Kida, S. & Ohkitani, K. Stretched vortices—the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241–264 (1994).

  30. 30.

    Meacham, S. P. Quasigeostrophic, ellipsoidal vortices in a stratified fluid. Dynam. Atmos. Oceans 16, 189–223 (1992).

  31. 31.

    Sipp, D., Lauga, E. & Jacquin, L. Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11, 3716–3728 (1999).

  32. 32.

    Godeferd, F. S., Cambon, C. & Leblanc, S. Zonal approach to centrifugal, elliptic and hyperbolic instabilities in Stuart vortices with external rotation. J. Fluid Mech. 449, 1–37 (2001).

  33. 33.

    Riedinger, X., Meunier, P. & LeDizès, S. Instability of a vertical columnar vortex in a stratified fluid. Exp. Fluids 49, 673–681 (2010).

  34. 34.

    Yim, E., Billant, P. & Ménesguen, C. Stability of an isolated pancake vortex in continuously stratified-rotating fluids. J. Fluid Mech. 801, 508–553 (2016).

  35. 35.

    Choi, D. S., Showman, A. P. & Vasavada, A. R. The evolving flow of Jupiter’s White Ovals and adjacent cyclones. Icarus 207, 359–372 (2010).

  36. 36.

    De Pater, I. et al. Persistent rings in and around Jupiter’s anticyclones—observations and theory. Icarus 210, 742–762 (2010).

  37. 37.

    Wong, M. H., de Pater, I., Asay-Davis, X., Marcus, P. S. & Go, C. Y. Vertical structure of Jupiter’s Oval BA before and after it reddened: what changed? Icarus 215, 211–225 (2011).

  38. 38.

    Legarreta, J. & Sánchez-Lavega, A. Vertical structure of Jupiter’s troposphere from nonlinear simulations of long-lived vortices. Icarus 196, 184–201 (2008).

  39. 39.

    Cabanes, S., Aurnou, J., Favier, B. & Le Bars, M. A laboratory model for deep-seated jets on the gas giants. Nat. Phys. 13, 387–390 (2017).

  40. 40.

    Simon, A. A. et al. Historical and contemporary trends in the size, drift, and color of Jupiter’s Great Red Spot. Astron. J. 155, 151 (2018).

  41. 41.

    Simon-Miller, A. A. & Gierasch, P. J. On the long-term variability of Jupiter’s winds and brightness as observed from Hubble. Icarus 210, 258–269 (2010).

  42. 42.

    Tollefson, J. et al. Changes in Jupiter’s zonal wind profile preceding and during the Juno mission. Icarus 296, 163–178 (2017).

  43. 43.

    Greicius, T. NASA’s Juno probes the depths of Jupiter’s Great Red Spot (2017);

  44. 44.

    Janssen, M. A. et al. MWR: microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. 213, 139–185 (2017).

  45. 45.

    Galanti, E. et al. Determining the depth of Jupiter’s Great Red Spot with Juno: a Slepian approach. Astrophys. J. 874, L24 (2019).

  46. 46.

    Choi, D., Banfield, D., Gierasch, P. & Showman, A. Velocity and vorticity measurements of Jupiter’s Great Red Spot using automated cloud feature tracking. Icarus 188, 35–46 (2007).

  47. 47.

    Shetty, S. & Marcus, P. S. Changes in Jupiter’s Great Red Spot (1979–2006) and Oval BA (2000–2006). Icarus 210, 182–201 (2010).

  48. 48.

    Jonsson, B. Images and Mosaics;

  49. 49.

    Shetty, S., Asay-Davis, X. S. & Marcus, P. S. On the interaction of Jupiter’s Great Red Spot and zonal jet streams. J. Atmos. Sci. 64, 4432–4444 (2007).

  50. 50.

    Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. Nek5000 (2008);

  51. 51.

    Asay-Davis, X. S., Marcus, P. S., Wong, M. H. & de Pater, I. Jupiter’s shrinking Great Red Spot and steady Oval BA: velocity measurements with the ‘advection corrected correlation image velocimetry’ automated cloud-tracking method. Icarus 203, 164–188 (2009).

  52. 52.

    Limaye, S. S. Jupiter: new estimates of the mean zonal flow at the cloud level. Icarus 65, 335–352 (1986).

  53. 53.

    Conrath, B. J., Flasar, F. M., Pirraglia, J. A., Gierasch, P. J. & Hunt, G. E. Thermal structure and dynamics of the Jovian atmosphere 2. Visible cloud features. J. Geophys. Res. Space Phys. 86, 8769–8775 (1981).

  54. 54.

    Flasar, F. M. et al. Thermal structure and dynamics of the Jovian atmosphere 1. The Great Red Spot. J. Geophys. Res. Space Phys. 86, 8759–8767 (1981).

  55. 55.

    Fletcher, L. N. et al. Thermal structure and composition of Jupiter’s Great Red Spot from high-resolution thermal imaging. Icarus 208, 306–328 (2010).

  56. 56.

    Seiff, A. et al. Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. Planets 103, 22857–22889 (1998).

  57. 57.

    Morales-Juberıás, R., Sánchez-Lavega, A. & Dowling, T. E. EPIC simulations of the merger of Jupiter’s White Ovals BE and FA: altitude-dependent behavior. Icarus 166, 63–74 (2003).

Download references


We acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 681835-FLUDYCO-ERC-2015-CoG). Centre de Calcul Intensif d’Aix-Marseille is acknowledged for granting access to its high-performance computing resources. This work was performed using HPC resources from GENCI-IDRIS (Grants 2019-A0060407543 and 2020-A0080407543).

Author information

G.F. and M.L.B. designed the research. D.L. and G.F. performed the experiments. B.F. developed the numerical code and D.L. ran the numerical simulations. D.L., G.F., B.F. and M.L.B. analysed the experimental and numerical data. D.L. led the writing of the paper.

Correspondence to Daphné Lemasquerier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Pedram Hassanzadeh, Andrew Ingersoll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary equations, methods and discussion, Figs. 1–8 and Tables 1–3.

Source data

Source Data Fig. 3

Data used to generate graphs in Fig. 3.

Source Data Fig. 5

Data used to generate graphs in Fig. 5b,c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lemasquerier, D., Facchini, G., Favier, B. et al. Remote determination of the shape of Jupiter’s vortices from laboratory experiments. Nat. Phys. (2020).

Download citation