Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deformation and bursting of elastic capsules impacting a rigid wall


From water balloons to cells and various organs, thin elastic shells enclosing liquid cores or capsules are ubiquitous. Although such capsules are rampant in nature and in engineering, the physics of their deformation upon rapid impact is virtually unexplored. Here we perform experiments and develop formal models to rationalize the deformation and possible bursting of elastic capsules impacting rigid walls. We discover an analogy to the impact of liquid drops, where the shell surface modulus plays the role of the drop surface tension. On the basis of this analogy, we propose an energy balance that quantitatively predicts the maximal deformation of the capsule in the inviscid limit, and for liquids with viscosities up to 1,000 cP (Reynolds numbers 10). Unlike drops, however, capsules can be pre-stretched and burst. Experiments show a substantial influence of the pre-stretch on the critical burst velocity, a feature also captured by our model. While we focus on macroscopic objects, our model could potentially be extended to account for the deformations of microcapsules in microfluidic channels. In addition, this work could have practical implications from the optimized detonation of fire-extinguishing balls to fight domestic fires and wildfires to the prevention of organ bursting in car crashes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Elastic capsule impinging a flat wall.
Fig. 2: Influence of the shell on the capsule deformation.
Fig. 3: Influence of the filler liquid on the capsule deformation.
Fig. 4: Effect of pre-stretch on the deformation and capsule burst.

Data availability

The data represented in Figs. are available as Source Data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Zarda, P. R., Chien, S. & Skalak, R. Elastic deformations of red blood cells. J. Biomech. 10, 211–221 (1977).

    Article  Google Scholar 

  2. 2.

    Barthès-Biesel, D. Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 25–52 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    ADS  Article  Google Scholar 

  4. 4.

    Kumar, D., Paulsen, J. D., Russell, T. P. & Menon, N. Wrapping with a splash: high-speed encapsulation with ultrathin sheets. Science 359, 775–778 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Niroobakhsh, Z., LaNasa, J. A., Belmonte, A. & Hickey, R. J. Rapid stabilization of immiscible fluids using nanostructured interfaces via surfactant association. Phys. Rev. Lett. 122, 178003 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Dinsmore, A. D. et al. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

    ADS  Article  Google Scholar 

  7. 7.

    Jambon-Puillet, E., Josserand, C. & Protière, S. Drops floating on granular rafts: a tool for liquid transport and delivery. Langmuir 34, 4437–4444 (2018).

    Article  Google Scholar 

  8. 8.

    Cox, E. F. Blunt abdominal trauma. a 5-year analysis of 870 patients requiring celiotomy. Ann. Surg. 199, 467–474 (1984).

    Article  Google Scholar 

  9. 9.

    Tanaka, Y., Yamazaki, Y. & Okumura, K. Bouncing gel balls: impact of soft gels onto rigid surface. Europhys. Lett. 63, 146–152 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    Tanaka, Y. Impact of gel balls beyond the Hertzian regime. Eur. Phys. J. E 18, 95–103 (2005).

    Article  Google Scholar 

  11. 11.

    Josserand, C. & Thoroddsen, S. T. Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365–391 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Roisman, I. V., Berberović, E. & Tropea, C. Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21, 052103 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Roisman, I. V. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21, 052104 (2009).

    ADS  Article  Google Scholar 

  14. 14.

    Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. Drop dynamics after impact on a solid wall: theory and simulations. Physics of Fluids 22, 062101 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Lagubeau, G. et al. Spreading dynamics of drop impacts. J. Fluid Mech. 713, 50–60 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Laan, N., de Bruin, K. G., Bartolo, D., Josserand, C. & Bonn, D. Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Madejski, J. Solidification of droplets on a cold surface. Int. J. Heat Mass Transf. 19, 1009–1013 (1976).

    ADS  Article  Google Scholar 

  18. 18.

    Chandra, S. & Avedisian, C. T. On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 13–41 (1991).

    ADS  Article  Google Scholar 

  19. 19.

    Roisman, I. V., Rioboo, R. & Tropea, C. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 1411–1430 (2002).

    ADS  Article  Google Scholar 

  20. 20.

    Richard, D. & Quéré, D. Bouncing water drops. Europhys. Lett. 50, 769–775 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    Richard, D., Clanet, C. & Quéré, D. Contact time of a bouncing drop. Nature 417, 811 (2002).

    ADS  Article  Google Scholar 

  22. 22.

    Clanet, C., Béguin, C., Richard, D. & Quéré, D. Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199–208 (2004).

    ADS  Article  Google Scholar 

  23. 23.

    Bartolo, D., Josserand, C. & Bonn, D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329–338 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    Bartolo, D., Josserand, C. & Bonn, D. Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96, 124501 (2006).

    ADS  Article  Google Scholar 

  25. 25.

    Libai, A. & Simmonds, J. G. The Nonlinear Theory of Elastic Shells (Cambridge Univ. Press, 2005).

  26. 26.

    Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Butterworth-Heinemann, 1986).

  27. 27.

    Knoche, S. & Kierfeld, J. Buckling of spherical capsules. Phys. Rev. E 84, 046608 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    de Brito, D., Challoner, K. R., Sehgal, A. & Mallon, W. The injury pattern of a new law enforcement weapon: the police bean bag. Ann. Emerg. Med. 38, 383–390 (2001).

    Article  Google Scholar 

  29. 29.

    Kaimart, W. Fire extinguishing ball. US patent 6,796,382 (2004).

  30. 30.

    Held, J. M. New technique for fire fighting-large scale open fires. US patent 11/546,272 (2008).

  31. 31.

    Koolivand, A. & Dimitrakopoulos, P. Deformation of an elastic capsule in a microfluidic T-junction: settling shape and moduli determination. Microfluid. Nanofluidics 21, 89 (2017).

    Article  Google Scholar 

  32. 32.

    Häner, E., Heil, M. & Juel, A. Deformation and sorting of capsules in a T-junction. J. Fluid Mech. 885, A4 (2020).

    ADS  Article  Google Scholar 

  33. 33.

    Lee, A. et al. Fabrication of slender elastic shells by the coating of curved surfaces. Nat. Commun. 7, 11155 (2016).

    ADS  Article  Google Scholar 

Download references


We thank H. Stone for sharing his rheometer and L. Cai for his help during the water balloon experiments. E.J.-P. was partially funded by the grant DMR-1420541 MRSCE: Princeton Center for Complex Materials-iSuperseed.

Author information




E.J.-P. and P.-T.B. conceived the project. E.J.-P. and T.J.J. performed the experiments. E.J.-P. derived the model. All authors wrote the manuscript.

Corresponding author

Correspondence to P.-T. Brun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Thomas Séon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental methods, theory and calculations.

Supplementary Video 1

Three custom-made VPS-8 capsules filled with water, glycerol and honey shot at U ≈ 14 m s−1 from the air canon (as a scale, the capsule radii are R0 = 7.6 mm).

Supplementary Video 2

Water balloon impact at U ≈ 4 m s−1 and bursting (as a scale, the balloon width is 7.6 cm, λp = 4.35).

Supplementary Video 3

A custom-made VPS-8 capsule filled with water impacts a smooth, rough and adhesive surface at U ≈ 3 m s−1 (as a scale, the capsule radius is R0 = 11.5 mm).

Source data

Source Data Fig. 2

Experimental and processed data.

Source Data Fig. 3

Experimental and processed data.

Source Data Fig. 4

Experimental and processed data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jambon-Puillet, E., Jones, T.J. & Brun, PT. Deformation and bursting of elastic capsules impacting a rigid wall. Nat. Phys. 16, 585–589 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing