Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the Planckian bound for heat diffusion in insulators

Abstract

In an insulator, thermal transport at high temperature is expected to be dominated by entirely classical phonon dynamics. In apparent tension with this expectation, recent experimental observations have led to the conjecture that the transport lifetime, τ, is subject to a Planckian bound from below, namely, τ τPl ∕ (kBT). Here, we argue that this Planckian bound is due to a quantum-mechanical bound on the sound velocity: vs < vM. The ‘melting velocity’ vM is defined in terms of the melting temperature of the crystal, the interatomic spacing and Planck’s constant. We show that for several classes of insulating crystals, both simple and complex, ττPlvMvs at high temperatures. The velocity bound therefore implies the Planckian bound.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Melting velocity versus mechanical (sound) velocity for various classes of non-metallic compound.
Fig. 2: Ratio of timescales ττPl versus the ratio of velocities vMvs.
Fig. 3: τPlτ × vMvs against δ2.

Data availability

The data represented in Figs. 13 are available as Source Data 13. All other data that support the plots within this paper and other findings of this study are given in the Supplementary Information and are furthermore available from the corresponding author upon reasonable request.

References

  1. 1.

    Martelli, V., Jiménez, J. L., Continentino, M., Baggio-Saitovitch, E. & Behnia, K. Thermal transport and phonon hydrodynamics in strontium titanate. Phys. Rev. Lett. 120, 125901 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    Behnia, K. & Kapitulnik, A. A lower bound to the thermal diffusivity of insulators. J. Phys. Condens. Matter 31, 405702 (2019).

    Article  Google Scholar 

  3. 3.

    Zhang, J., Kountz, E. D., Behnia, K. & Kapitulnik, A. Thermalization and possible signatures of quantum chaos in complex crystalline materials. Proc. Natl Acad. Sci. USA 116, 19869–19874 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54–61 (2014).

    Article  Google Scholar 

  6. 6.

    Peierls, R. On the statistical basis for the electron theory of metals. Helv. Phys. Act. (Supp.) 7, 24–30 (1934).

    Google Scholar 

  7. 7.

    Peierls, R. Remarks on the theory of metals. Z. Phys. 88, 786–791 (1934).

    ADS  Article  Google Scholar 

  8. 8.

    Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).

  9. 9.

    Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Zhang, J. et al. Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x. Proc. Natl Acad. Sci. USA 114, 5378–5383 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Zhang, J. et al. Thermal diffusivity above the Mott-Ioffe-Regel limit. Phys. Rev. B 100, 241114 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142–147 (2019).

    Article  Google Scholar 

  13. 13.

    Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 142, 076801 (2019).

    Google Scholar 

  14. 14.

    Feng, L., Shiga, T. & Shiomi, J. Phonon transport in perovskite SrTiO3 from first principles. Appl. Phys. Express 8, 071501 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Tadano, T. & Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B 92, 054301 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Slack, G. A. in Solid State Physics Vol. 34, 1–71 (Academic Press, 1979).

  17. 17.

    McGaughey, A. J. H., Jain, A., Kim, H.-Y. & Fu, B. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Lindsay, L., Katre, A., Cepellotti, A. & Mingo, N. Perspective on ab initio phonon thermal transport. J. Appl. Phys. 126, 050902 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Grimvall, G. & Sjodin, S. Correlation of properties of materials to Debye and melting temperatures. Physica Scripta 10, 340–352 (1974).

    ADS  Article  Google Scholar 

  20. 20.

    Poirier, J. Lindemann law and the melting temperature of perovskites. Phys. Earth Planet. Inter. 54, 364–369 (1989).

    ADS  Article  Google Scholar 

  21. 21.

    Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 1960).

  22. 22.

    Auerbach, A. & Allen, P. B. Universal high-temperature saturation in phonon and electron transport. Phys. Rev. B 29, 2884–2890 (1984).

    ADS  Article  Google Scholar 

  23. 23.

    Kittel, C. Interpretation of the thermal conductivity of glasses. Phys. Rev. 75, 972–974 (1949).

    ADS  Article  Google Scholar 

  24. 24.

    Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    ADS  Article  Google Scholar 

  25. 25.

    Allen, P. B., Du, X., Mihaly, L. & Forro, L. Thermal conductivity of insulating Bi2Sr2YCu2O8 and superconducting Bi2Sr2CaCu2O8: failure of the phonon-gas picture. Phys. Rev. B 49, 9073–9079 (1994).

    ADS  Article  Google Scholar 

  26. 26.

    Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Ladd, A. J. C., Moran, B. & Hoover, W. G. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B 34, 5058–5064 (1986).

    ADS  Article  Google Scholar 

  28. 28.

    Glensk, A. et al. Phonon lifetimes throughout the Brillouin zone at elevated temperatures from experiment and ab initio. Phys. Rev. Lett. 123, 235501 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Sun, T. & Allen, P. B. Lattice thermal conductivity: computations and theory of the high-temperature breakdown of the phonon-gas model. Phys. Rev. B 82, 224305 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972).

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Hartman, T., Hartnoll, S. A. & Mahajan, R. Upper bound on diffusivity. Phys. Rev. Lett. 119, 141601 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Nachtergaele, B., Raz, H., Schlein, B. & Sims, R. Lieb-Robinson bounds for harmonic and anharmonic lattice systems. Commun. Math. Phys. 286, 1073–1098 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Nussinov, Z. Infinite range correlations in non-equilibrium quantum systems and their possible experimental realizations. Nucl. Phys. B 953, 114948 (2017).

    Article  Google Scholar 

  34. 34.

    Zhang, D.-B., Allen, P. B., Sun, T. & Wentzcovitch, R. M. Thermal conductivity from phonon quasiparticles with subminimal mean free path in the MgSiO3 perovskite. Phys. Rev. B 96, 100302 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Tian, Z. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Martin, C. J. & O’Connor, D. A. An experimental test of Lindemann’s melting law. J. Phys. C Solid State Phys. 10, 3521–3526 (1977).

    ADS  Article  Google Scholar 

  37. 37.

    Yu, X. & Hofmeister, A. M. Thermal diffusivity of alkali and silver halide crystals as a function of temperature. J. Appl. Phys. 109, 033516 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Slack, G. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).

    ADS  Article  Google Scholar 

  39. 39.

    Zeier, W. G. et al. Thinking like a chemist: intuition in thermoelectric materials. Angew. Chem. Int. Ed. 55, 6826–6841 (2016).

    Article  Google Scholar 

  40. 40.

    Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Lindsay, L. & Broido, D. A. Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 20, 165209 (2008).

    ADS  Article  Google Scholar 

  42. 42.

    Ju, S. et al. Exploring diamond-like lattice thermal conductivity crystals via feature-based transfer learning. Preprint at https://arxiv.org/abs/1909.11234 (2019).

  43. 43.

    Wehinger, B. et al. Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite). Geophys. Res. Lett. 43, 2568–2575 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Suda, J. et al. The first-order Raman spectra and lattice dynamics for YAlO3 crystal. J. Phys. Soc. Jpn 72, 1418–1422 (2003).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Behnia, A. Kapitulnik, S. Kivelson and J. Zaanen for their insightful comments and criticism. We also thank Z. Han and D. Shi for discussions on related topics. This work is supported by the Department of Energy, Office of Basic Energy Sciences, under contract no. DEAC02-76SF00515. C.H.M. is supported by an NSF graduate fellowship.

Author information

Affiliations

Authors

Contributions

C.H.M. and S.A.H. both conceived and performed the research, and wrote the paper.

Corresponding author

Correspondence to Sean A. Hartnoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary table and refs. 1–45.

Source data

Source Data Fig. 1

Labelled data points.

Source Data Fig. 2

Labelled data points.

Source Data Fig. 3

Labelled data points.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mousatov, C.H., Hartnoll, S.A. On the Planckian bound for heat diffusion in insulators. Nat. Phys. 16, 579–584 (2020). https://doi.org/10.1038/s41567-020-0828-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing