Discovery of the soft electronic modes of the trimeron order in magnetite


The Verwey transition in magnetite (Fe3O4) is the first metal–insulator transition ever observed1 and involves a concomitant structural rearrangement and charge–orbital ordering. Owing to the complex interplay of these intertwined degrees of freedom, a complete characterization of the low-temperature phase of magnetite and the mechanism driving the transition have long remained elusive. It was demonstrated in recent years that the fundamental building blocks of the charge-ordered structure are three-site small polarons called trimerons2. However, electronic collective modes of this trimeron order have not been detected to date, and thus an understanding of the dynamics of the Verwey transition from an electronic point of view is still lacking. Here, we discover spectroscopic signatures of the low-energy electronic excitations of the trimeron network using terahertz light. By driving these modes coherently with an ultrashort laser pulse, we reveal their critical softening and hence demonstrate their direct involvement in the Verwey transition. These findings shed new light on the cooperative mechanism at the origin of magnetite’s exotic ground state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The trimeron order in magnetite and the experimental methodology.
Fig. 2: Observation of low-energy electronic collective modes and their critical softening.
Fig. 3: Mutual coupling between the two collective modes.
Fig. 4: The time-dependent GL theory describing the dynamics of the collective modes.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939).

  2. 2.

    Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).

  3. 3.

    Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).

  4. 4.

    Mott, N. F. Materials with mixed valency that show a Verwey transition. Philos. Mag. B 42, 327–335 (1980).

  5. 5.

    Walz, F. The Verwey transition - a topical review. J. Phys. Cond. Matter 14, R285–R340 (2002).

  6. 6.

    Khomskii, D. I. Transition Metal Compounds. (Cambridge Univ. Press, 2014).

  7. 7.

    Leonov, I., Yaresko, A. N., Antonov, V. N., Korotin, M. A. & Anisimov, V. I. Charge and orbital order in Fe3O4. Phys. Rev. Lett. 93, 146404 (2004).

  8. 8.

    Yamada, Y. Molecular polarons and valence fluctuations in Fe3O4. Philos. Mag. B 42, 377–385 (1980).

  9. 9.

    Piekarz, P., Parlinski, K. & Oleś, A. M. Mechanism of the Verwey transition in magnetite. Phys. Rev. Lett. 97, 156402 (2006).

  10. 10.

    Wright, J. P., Attfield, J. P. & Radaelli, P. G. Long range charge ordering in magnetite below the Verwey transition. Phys. Rev. Lett. 87, 266401 (2001).

  11. 11.

    Subías, G. et al. Structural distortion, charge modulation and local anisotropies in magnetite below the Verwey transition using resonant x-ray scattering. J. Synchrotron Rad. 19, 159–173 (2012).

  12. 12.

    Hoesch, M. et al. Anharmonicity due to electron–phonon coupling in magnetite. Phys. Rev. Lett. 110, 207204 (2013).

  13. 13.

    Bosak, A. et al. Short-range correlations in magnetite above the Verwey temperature. Phys. Rev. X 4, 011040 (2014).

  14. 14.

    Perversi, G. et al. Co-emergence of magnetic order and structural fluctuations in magnetite. Nat. Commun. 10, 2857 (2019).

  15. 15.

    Yamauchi, K., Fukushima, T. & Picozzi, S. Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: first-principles study. Phys. Rev. B 79, 212404 (2009).

  16. 16.

    Pimenov, A. et al. Terahertz conductivity at the Verwey transition in magnetite. Phys. Rev. B 72, 035131 (2005).

  17. 17.

    Gasparov, L. V. et al. Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B 62, 7939–7944 (2000).

  18. 18.

    McQueeney, R. J. et al. Influence of the Verwey transition on the spin-wave dispersion of magnetite. J. Appl. Phys. 97, 10A902 (2005).

  19. 19.

    Borroni, S. et al. Mapping the lattice dynamical anomaly of the order parameters across the Verwey transition in magnetite. New J. Phys. 19, 103013 (2017).

  20. 20.

    Huang, H. Y. et al. Jahn–Teller distortion driven magnetic polarons in magnetite. Nat. Commun. 8, 15929 (2017).

  21. 21.

    Borroni, S. et al. Light scattering from the critical modes of the Verwey transition in magnetite. Phys. Rev. B 98, 184301 (2018).

  22. 22.

    Elnaggar, H. et al. Magnetic contrast at spin-flip excitations: an advanced x-ray spectroscopy tool to study magnetic-ordering. ACS Appl. Mater. Interfaces 11, 36213–36220 (2019).

  23. 23.

    Samuelsen, E. J. & Steinsvoll, O. Low-energy phonons in magnetite. Phys. Status Solidi B 61, 615–620 (1974).

  24. 24.

    Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304 (2002).

  25. 25.

    De Jong, S. et al. Speed limit of the insulator–metal transition in magnetite. Nat. Mater. 12, 882–886 (2013).

  26. 26.

    Randi, F. et al. Phase separation in the nonequilibrium Verwey transition in magnetite. Phys. Rev. B 93, 054305 (2016).

  27. 27.

    Wall, S. et al. Ultrafast changes in lattice symmetry probed by coherent phonons. Nat. Commun. 3, 721 (2012).

  28. 28.

    Schaefer, H., Kabanov, V. V. & Demsar, J. Collective modes in quasi-one-dimensional charge-density wave systems probed by femtosecond time-resolved optical studies. Phys. Rev. B 89, 045106 (2014).

  29. 29.

    Yamada, Y., Wakabayashi, N. & Nicklow, R. M. Neutron diffuse scattering in magnetite due to molecular polarons. Phys. Rev. B 21, 4642–4648 (1980).

  30. 30.

    Borroni, S. et al. Coherent generation of symmetry-forbidden phonons by light-induced electron–phonon interactions in magnetite. Phys. Rev. B 96, 104308 (2017).

  31. 31.

    Pontius, N. et al. Time-resolved resonant soft x-ray diffraction with free-electron lasers: femtosecond dynamics across the Verwey transition in magnetite. Appl. Phys. Lett. 98, 182504 (2011).

  32. 32.

    Pennacchio, F. Spatio-Temporal Observation of Dynamical Structures in Order–Disorder Phenomena and Phase Transitions via Ultrafast Electron Diffraction. PhD thesis, EPFL (2018).

  33. 33.

    Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

  34. 34.

    Giorgianni, F. et al. Leggett mode controlled by light pulses. Nat. Phys. 15, 341–346 (2019).

  35. 35.

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

  36. 36.

    Bałanda, M. et al. Magnetic AC susceptibility of stoichiometric and low zinc doped magnetite single crystals. Eur. Phys. J. B 43, 201–212 (2005).

  37. 37.

    Duvillaret, L., Garet, F. & Coutaz, J.-L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).

  38. 38.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  39. 39.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

  40. 40.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  41. 41.

    Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

  42. 42.

    Parlinski, K., Li, Z. Q. & Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997).

  43. 43.

    Parlinski, K. PHONON Software (Computing for Materials, 2013).

  44. 44.

    Kołodziej, T. et al. Nuclear inelastic scattering studies of lattice dynamics in magnetite with a first- and second-order Verwey transition. Phys. Rev. B 85, 104301 (2012).

  45. 45.

    Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535–541 (1978).

  46. 46.

    Lee, P. A. & Rice, T. M. Electric field depinning of charge density waves. Phys. Rev. B 19, 3970–3980 (1979).

  47. 47.

    Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

  48. 48.

    Thomson, M. D. et al. Phase-channel dynamics reveal the role of impurities and screening in a quasi-one-dimensional charge-density wave system. Sci. Rep. 7, 2039 (2017).

  49. 49.

    Schäfer, H., Kabanov, V. V., Beyer, M., Biljakovic, K. & Demsar, J. Disentanglement of the electronic and lattice parts of the order parameter in a 1D charge density wave system probed by femtosecond spectroscopy. Phys. Rev. Lett. 105, 066402 (2010).

  50. 50.

    Schaefer, H., Kabanov, V. V. & Demsar, J. Collective modes in quasi-one-dimensional charge-density wave systems probed by femtosecond time-resolved optical studies. Phys. Rev. B 89, 045106 (2014).

Download references


Work at MIT was supported by the US Department of Energy, BES DMSE, Award number DE-FG02-08ER46521 and by the Gordon and Betty Moore Foundation’s EPiQS Initiative grant GBMF4540. C.A.B. and E.B. acknowledge additional support from the National Science Foundation Graduate Research Fellowship under Grant No. 1122374 and the Swiss National Science Foundation under fellowships P2ELP2-172290 and P400P2-183842, respectively. M.R.-V. and G.A.F. were primarily supported under NSF MRSEC award DMR-1720595. G.A.F also acknowledges support from a Simons Fellowship. A.M.O. is grateful for the Alexander von Humboldt Foundation Fellowship (Humboldt-Forschungspreis). A.M.O. and P.P. acknowledge the support of Narodowe Centrum Nauki (NCN, National Science Centre, Poland), Projects No. 2016/23/B/ST3/00839 and No. 2017/25/B/ST3/02586, respectively. D.L. acknowledges the project IT4Innovations National Supercomputing Center CZ.02.1.01/0.0/0.0/16_013/0001791 and Grant No. 17-27790S of the Grant Agency of the Czech Republic. J.L. acknowledges financial support from Italian MAECI through the collaborative project SUPERTOP-PGR04879, bilateral project AR17MO7, Italian MIUR under the PRIN project Quantum2D, Grant No. 2017Z8TS5B, and from Regione Lazio (L.R. 13/08) under project SIMAP.

Author information

E.B. conceived the study. C.A.B., E.B. and I.O.O. performed the experiments. C.A.B. and E.B. analysed the experimental data. A.K. grew the magnetite single crystals. P.P., D.L., K.P. and A.M.O. performed the DFT calculations. M.R.-V. and G.A.F. performed the time-dependent GL calculations. J.L. developed the model of coherent polaron tunnelling with input from P.P. and contributed to the data interpretation. C.A.B., E.B. and N.G. wrote the manuscript with crucial input from all other authors. This project was supervised by N.G.

Correspondence to Nuh Gedik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Fulvio Parmigiani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 DFT calculation of the phonon dispersion in the Cc structure.

a, Low-energy phonon energy-momentum dispersion curves of magnetite calculated for the monoclinic Cc symmetry. The symbols mark the energies of the phonon modes measured experimentally by inelastic neutron scattering (violet symbols from ref. 23 and red symbols from ref. 19) and inelastic x-ray scattering (green symbols from ref. 12). There are no optical phonon branches in the energy range of the two newly-observed collective modes (1 − 4 meV). b, Partial phonon density of states projected on the Fe sites. The results of the DFT calculations are shown in black, while the experimental results at 50 K (taken from ref. 44) are in red.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Notes 1–6 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baldini, E., Belvin, C.A., Rodriguez-Vega, M. et al. Discovery of the soft electronic modes of the trimeron order in magnetite. Nat. Phys. (2020).

Download citation