Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broken time-reversal symmetry in the topological superconductor UPt3

Abstract

Topological properties of materials are of fundamental as well as practical importance1,2. Of particular interest are unconventional superconductors that break time-reversal symmetry, for which the superconducting state is protected topologically and vortices can host Majorana fermions with potential use in quantum computing3,4. However, in striking contrast to the unconventional A phase of superfluid 3He where chiral symmetry was directly observed5, identification of broken time-reversal symmetry of the superconducting order parameter, a key component of chiral symmetry, has presented a challenge in bulk materials. The two leading candidates for bulk chiral superconductors are UPt3 (refs. 6,7,8) and Sr2RuO4 (ref. 9), although evidence for broken time-reversal symmetry comes largely from surface-sensitive measurements. A long-sought demonstration of broken time-reversal symmetry in bulk Sr2RuO4 is the observation of edge currents, which has so far not been successful10. The situation for UPt3 is not much better. Here, we use vortices to probe the superconducting state in ultraclean crystals of UPt3. Using small-angle neutron scattering, a strictly bulk probe, we demonstrate that the vortices possess an internal degree of freedom in one of its three superconducting phases, providing direct evidence for bulk broken time-reversal symmetry in this material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A UPt3 phase diagram indicating the three vortex phases (A, B and C) for H  c.
Fig. 2: VL diffraction patterns.
Fig. 3: The field dependence of the VL configuration.
Fig. 4: The B–C phase transition determined from the onset of VL disordering.

Similar content being viewed by others

Data availability

The SANS data obtained at ILL that support the findings of this study are available in the ILL repository44. All SANS data were analysed using the GRASP software package45. The data represented in Figs. 3 and 4 and Extended Data Fig. 2 are available as source data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  2. Mizushima, T. et al. Symmetry-protected topological superfluids and superconductors —from the basics to 3 He—. J. Phys. Soc. Jpn 85, 022001 (2016).

    Article  ADS  Google Scholar 

  3. Schnyder, A. P. & Brydon, P. M. R. Topological surface states in nodal superconductors. J. Phys. Condens. Matter 27, 243201 (2015).

    Article  ADS  Google Scholar 

  4. Kozii, V., Venderbos, J. W. F. & Fu, L. Three-dimensional majorana fermions in chiral superconductors. Sci. Adv. 2, e1601835 (2016).

    Article  ADS  Google Scholar 

  5. Ikegami, H., Tsutsumi, Y. & Kono, K. Chiral symmetry breaking in superfluid 3He-A. Science 341, 59–62 (2013).

    Article  ADS  Google Scholar 

  6. Joynt, R. & Taillefer, L. The superconducting phases of UPt3. Rev. Mod. Phys. 74, 235–294 (2002).

    Article  ADS  Google Scholar 

  7. Strand, J. D., Van Harlingen, D. J., Kycia, J. & Halperin, W. P. Evidence for complex superconducting order parameter symmetry in the low-temperature phase of UPt3 from Josephson interferometry. Phys. Rev. Lett. 103, 59–62 (2009).

    Article  Google Scholar 

  8. Schemm, E. R., Gannon, W. J., Wishne, C. M., Halperin, W. P. & Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science 345, 190–193 (2014).

    Article  ADS  Google Scholar 

  9. Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S. & Ishida, K. Evaluation of spin-triplet superconductivity in Sr2RuO4. J. Phys. Soc. Jpn 81, 011009 (2012).

    Article  ADS  Google Scholar 

  10. Hicks, C. W. et al. Limits on superconductivity-related magnetization in Sr2RuO4 and PrOs4Sb12 from scanning SQUID microscopy. Phys. Rev. B 81, 214501 (2010).

    Article  ADS  Google Scholar 

  11. Hess, D. W., Tokuyasu, T. A. & Sauls, J. A. Broken symmetry in an unconventional superconductor: a model for the double transition in UPt3. J. Phys. Condens. Matter 1, 8135–8145 (1989).

    Article  ADS  Google Scholar 

  12. Sauls, J. A. The order parameter for the superconducting phases of UPt3. Adv. Phys. 43, 113–141 (1994).

    Article  ADS  Google Scholar 

  13. Adenwalla, S. et al. Phase diagram of UPt3 from ultrasonic velocity measurements. Phys. Rev. Lett. 65, 2298–2301 (1990).

    Article  ADS  Google Scholar 

  14. Shivaram, B. S., Rosenbaum, T. F. & Hinks, D. G. Unusual angular and temperature dependence of the upper critical field in UPt3. Phys. Rev. Lett. 57, 1259–1262 (1986).

    Article  ADS  Google Scholar 

  15. Choi, C. H. & Sauls, J. A. Identification of odd-parity superconductivity in UPt3 from paramagnetic effects on the upper critical field. Phys. Rev. Lett. 66, 484–487 (1991).

    Article  ADS  Google Scholar 

  16. Taillefer, L., Ellman, B., Lussier, B. & Poirier, M. On the gap structure of UPt3: phases A and B. Physica B 230-232, 327–331 (1997).

    Article  ADS  Google Scholar 

  17. Graf, M. J., Yip, S. K. & Sauls, J. A. Identification of the orbital pairing symmetry in UPt3. Phys. Rev. B 62, 14393–14402 (2000).

    Article  ADS  Google Scholar 

  18. Signore, P. J. C. et al. Inductive measurements of UPt3 in the superconducting state. Phys. Rev. B 52, 4446–4461 (1995).

    Article  ADS  Google Scholar 

  19. Schöttl, S. et al. Anisotropic dc magnetization of superconducting UPt3 and antiferromagnetic ordering below 20 mK. Phys. Rev. Lett. 82, 2378–2381 (1999).

    Article  ADS  Google Scholar 

  20. Gannon, W. J. et al. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt3. New J. Phys. 17, 023041 (2015).

    Article  ADS  Google Scholar 

  21. Strand, J. D. et al. The transition between real and complex superconducting order parameter phases in UPt3. Science 328, 1368–1369 (2010).

    Article  ADS  Google Scholar 

  22. Hassinger, E. et al. Vertical line nodes in the superconducting gap structure of Sr2RuO4. Phys. Rev. X 7, 011032 (2017).

    Google Scholar 

  23. Pustogow, A. et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75 (2019).

    Article  ADS  Google Scholar 

  24. Luke, G. M. et al. Muon spin relaxation in UPt3. Phys. Rev. Lett. 71, 1466–1469 (1993).

    Article  ADS  Google Scholar 

  25. de Réotier, P. D. et al. Absence of zero field muon spin relaxation induced by superconductivity in the B phase of UPt3. Phys. Lett. A 205, 239–243 (1995).

    Article  ADS  Google Scholar 

  26. Keller, N., Tholence, J. L., Huxley, A. & Flouquet, J. Angular dependence of the upper critical field of the heavy fermion superconductor UPt3. Phys. Rev. Lett. 73, 2364–2367 (1994).

    Article  ADS  Google Scholar 

  27. Huxley, A. et al. Realignment of the flux-line lattice by a change in the symmetry of superconductivity in UPt3. Nature 406, 160–164 (2000).

    Article  ADS  Google Scholar 

  28. Kycia, J. B. et al. Suppression of superconductivity in UPt3 single crystals. Phys. Rev. B 58, R603–R606 (1998).

    Article  ADS  Google Scholar 

  29. Yaron, U. et al. Small angle neutron scattering studies of the vortex lattice in the UPt3 mixed state: direct structural evidence for the B to C transition. Phys. Rev. Lett. 78, 3185–3188 (1997).

    Article  ADS  Google Scholar 

  30. Mühlbauer, S. et al. Magnetic small-angle neutron scattering. Rev. Mod. Phys. 91, 015004 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  31. Eskildsen, M. R. et al. Structural stability of the square flux line lattice in YNi2 B2C and LuNi2B2C studied with small angle neutron scattering. Phys. Rev. Lett. 79, 487–490 (1997).

    Article  ADS  Google Scholar 

  32. Lütke-Entrup, N. et al. Flux-flow resistivity in UPt3: evidence for nonsingular vortex-core structure. Phys. Rev. B 64, 020510 (2001).

    Article  ADS  Google Scholar 

  33. Tokuyasu, T. A. & Sauls, J. A. Stability of doubly quantized vortices in unconventional superconductors. Physica B 165–166, 347–348 (1990).

    Article  ADS  Google Scholar 

  34. Sauls, J. A. & Eschrig, M. Vortices in chiral, spin-triplet superconductors and superfluids. New J. Phys. 11, 075008 (2009).

    Article  ADS  Google Scholar 

  35. Ichioka, M., Machida, K. & Sauls, J. A. Vortex states of chiral p-wave superconductors. J. Phys. Conf. Ser. 400, 022031 (2012).

    Article  Google Scholar 

  36. Volovik, G. E. On the vortex lattice transition in heavy-fermionic UPt3. J. Phys. C 21, L221–L224 (1988).

    Article  ADS  Google Scholar 

  37. Tsutsumi, Y., Machida, K., Ohmi, T. & Ozaki, M.-a A spin triplet superconductor UPt3. J. Phys. Soc. Jpn 81, 074717 (2012).

    Article  ADS  Google Scholar 

  38. Takamatsu, S. & Yanase, Y. Chiral superconductivity in nematic states. Phys. Rev. B 91, 054504 (2015).

    Article  ADS  Google Scholar 

  39. Champel, T. & Mineev, V. P. Theory of equilibrium flux lattice in UPt3 under magnetic field parallel to hexagonal crystal axis. Phys. Rev. Lett. 86, 4903–4906 (2001).

    Article  ADS  Google Scholar 

  40. Tokuyasu, T. A., Hess, D. W. & Sauls, J. A. Vortex states in an unconventional superconductor and the mixed phases of UPt3. Phys. Rev. B 41, 8891–8903 (1990).

    Article  ADS  Google Scholar 

  41. Ichioka, M. & Machida, K. Field dependence of the vortex structure in chiral p-wave superconductors. Phys. Rev. B 65, 224517 (2002).

    Article  ADS  Google Scholar 

  42. Nomoto, T. & Ikeda, H. Exotic multigap structure in UPt3 unveiled by a first-principles analysis. Phys. Rev. Lett. 117, 217002 (2016).

    Article  ADS  Google Scholar 

  43. Thuneberg, E. V. Identification of vortices in superfluid 3He-B. Phys. Rev. Lett. 56, 359–362 (1986).

    Article  ADS  Google Scholar 

  44. Eskildsen, M. R. et al. Chiral Effects on the Vortex Lattice in UPt 3 (Institut Laue-Langevin, 2016); https://doi.org/10.5291/ILL-DATA.5-42-402

  45. Dewhurst, C. GRASP (Institut Laue-Langevin, 2020); https://www.ill.eu/users/support-labs-infrastructure/software-scientific-tools/grasp/

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, under Award Nos. DE-SC0005051 (M.R.E.: University of Notre Dame; neutron scattering) and DE-FG02-05ER46248 (W.P.H.: Northwestern University; crystal growth and neutron scattering), and the Center for Applied Physics and Superconducting Technologies (J.A.S.: Northwestern University; theory). The research of J.A.S. is supported by National Science Foundation Grant DMR-1508730. A portion of this research used resources at the High Flux Isotope Reactor, a US DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Part of this work is based on experiments performed at the Institut Laue–Langevin, Grenoble, France and at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

W.J.G., W.P.H., J.A.S. and M.R.E. conceived the experiment. W.J.G. grew the crystals. K.E.A., W.J.G., S.J.K., W.P.H. and M.R.E. performed the SANS experiments with assistance from L.D.-S., C.D.D., J.G., G.N. and U.G. W.P.H., J.A.S. and M.R.E. wrote the paper with input from all authors.

Corresponding author

Correspondence to M. R. Eskildsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Vortex lattice diffraction patterns.

a-f, Vortex lattice diffraction pattern for a range of different field magnitudes following a field reduction. g-l, Same, but following a field reversal. The VL domain splitting (ω) is indicated in each panel. Measurements were performed at a single angular setting, satisfying the Bragg condition for VL reflections at the top of the detector. Zero field background scattering is subtracted, and the detector center near Q = 0 is masked off.

Extended Data Fig. 2 Vortex density determined from the magnitude of the VL scattering vectors.

a, Magnetic induction vs applied magnetic field. The inset shows VL Bragg peaks, their corresponding scattering vectors (Q1∕2), and the opening angle (β). Peaks associated with the two different VL domain orientations are indicated by full and dashed lines respectively. Only Bragg peaks indicated by solid symbols were imaged by SANS. The line is a linear fit to the data. b, Ratio of magnetic induction to applied field (B/H). The center and width of the gray bar indicates the average and standard deviation of the values for fields ≥ 0.4 T.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and discussion.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avers, K.E., Gannon, W.J., Kuhn, S.J. et al. Broken time-reversal symmetry in the topological superconductor UPt3. Nat. Phys. 16, 531–535 (2020). https://doi.org/10.1038/s41567-020-0822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0822-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing