Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chromatic neuronal jamming in a primitive brain

Abstract

Jamming models developed in inanimate matter have been widely used to describe cell packing in tissues1,2,3,4,5,6,7, but predominantly neglect cell diversity, despite its prevalence in biology. Most tissues, animal brains in particular, comprise a mix of many cell types, with mounting evidence suggesting that neurons can recognize their respective types as they organize in space8,9,10,11. How cell diversity revises the current jamming paradigm is unknown. Here, in the brain of the flatworm planarian Schmidtea mediterranea, which exhibits remarkable tissue plasticity within a simple, quantifiable nervous system12,13,14,15,16, we identify a distinct packing state, ‘chromatic’ jamming. Combining experiments with computational modelling, we show that neurons of distinct types form independent percolating networks barring any physical contact. This jammed state emerges as cell packing configurations become constrained by cell type-specific interactions and therefore may extend to describe cell packing in similarly complex tissues composed of multiple cell types.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The planarian brain allows quantification of neuronal packing with single-neuron resolution.
Fig. 2: Neuronal packing exhibits geometric hallmarks of jamming.
Fig. 3: A chromatic jamming model for neuronal packing.

Data availability

The datasets generated and analysed within this study can be downloaded from https://github.com/xianshine/cJamming or are available from the corresponding authors on request.

Code availability

Analysis and simulation codes are available for public access on GitHub (https://github.com/xianshine/cJamming).

References

  1. 1.

    Farhadifar, R., Röper, J. C., Aigouy, B., Eaton, S. & Jülicher, F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  Google Scholar 

  2. 2.

    Oswald, L., Grosser, S., Smith, D. M. & Käs, J. A. Jamming transitions in cancer. J. Phys. D 50, 483001 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Atia, L. et al. Geometric constraints during epithelial jamming. Nat. Phys. 14, 613–620 (2018).

    Article  Google Scholar 

  4. 4.

    Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

    Article  Google Scholar 

  5. 5.

    Park, J. A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Schötz, E. M., Lanio, M., Talbot, J. A. & Manning, M. L. Glassy dynamics in three-dimensional embryonic tissues. J. R. Soc. Interface 10, 20130726 (2013).

    Article  Google Scholar 

  8. 8.

    Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).

    Article  Google Scholar 

  9. 9.

    Rockhill, R. L., Euler, T. & Masland, R. H. Spatial order within but not between types of retinal neurons. Proc. Natl Acad. Sci. USA 97, 2303–2307 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    Grueber, W. B. & Sagasti, A. Self-avoidance and tiling: mechanisms of dendrite and axon spacing. CSH Perspect. Biol. 2, a001750 (2010).

    Google Scholar 

  11. 11.

    Fuerst, P. G., Koizumi, A., Masland, R. H. & Burgess, R. W. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451, 470–474 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Newmark, P. A. & Alvarado, A. S. Not your father’s planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3, 210–219 (2002).

    Article  Google Scholar 

  13. 13.

    Cebrià, F. et al. Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Dev. Growth Differ. 44, 135–146 (2002).

    Article  Google Scholar 

  14. 14.

    Takeda, H., Nishimura, K. & Agata, K. Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system. Zool. Sci. 26, 805–813 (2009).

    Article  Google Scholar 

  15. 15.

    Mineta, K. et al. Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc. Natl Acad. Sci. USA 100, 7666–7671 (2003).

    ADS  Article  Google Scholar 

  16. 16.

    Rink, J. C. Stem cell systems and regeneration in planaria. Dev. Genes Evol. 223, 67–84 (2013).

    Article  Google Scholar 

  17. 17.

    Clusel, M., Corwin, E. I., Siemens, A. O. N. & Brujić, J. A ‘granocentric’ model for random packing of jammed emulsions. Nature 460, 611–615 (2009).

    ADS  Article  Google Scholar 

  18. 18.

    Song, C., Wang, P. & Makse, H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Jorjadze, I., Pontani, L. L., Newhall, K. A. & Brujić, J. Attractive emulsion droplets probe the phase diagram of jammed granular matter. Proc. Natl Acad. Sci. USA 108, 4286–4291 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    O’Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22 (1998).

    ADS  Article  Google Scholar 

  22. 22.

    Reese, B. E. & Keeley, P. W. Design principles and developmental mechanisms underlying retinal mosaics. Biol. Rev. 90, 854–876 (2015).

    Article  Google Scholar 

  23. 23.

    Han, C. et al. Integrins regulate repulsion-mediated dendritic patterning of Drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 73, 64–78 (2012).

    Article  Google Scholar 

  24. 24.

    Wilson, R. Four Colors Suffice: How the Map Problem Was Solved (Princeton University Press, 2013).

  25. 25.

    Fraguas, S., Barberán, S., Ibarra, B., Stöger, L. & Cebrià, F. Regeneration of neuronal cell types in Schmidtea mediterranea: an immunohistochemical and expression study. Int. J. Dev. Biol. 56, 143–153 (2012).

    Article  Google Scholar 

  26. 26.

    Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).

    Article  Google Scholar 

  27. 27.

    Agata, K. et al. Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zool. Sci. 15, 433–440 (1998).

    Article  Google Scholar 

  28. 28.

    Inoue, T. et al. Morphological and functional recovery of the planarian photosensing system during head regeneration. Zool. Sci. 21, 275–283 (2004).

    Article  Google Scholar 

  29. 29.

    Collins, J. J. et al. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol. 8, e1000509 (2010).

    Article  Google Scholar 

  30. 30.

    Duyckaerts, C. & Godefroy, G. Voronoi tessellation to study the numerical density and the spatial distribution of neurons. J. Chem. Neuroanat. 20, 83–92 (2000).

    Article  Google Scholar 

  31. 31.

    Kay, J. N., Chu, M. W. & Sanes, J. R. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483, 465–469 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Wässle, H. & Riemann, H. J. The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200, 441–461 (1978).

    ADS  Article  Google Scholar 

  33. 33.

    O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    ADS  Article  Google Scholar 

  34. 34.

    Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor and Francis, 1994). .

  35. 35.

    Morita, M. & Best, J. B. Electron microscopic studies of planaria: III. Some observations on the fine structure of planarian nervous tissue. J. Exp. Zool. 161, 391–411 (1966).

    Article  Google Scholar 

  36. 36.

    Wang, I. E., Lapan, S. W., Scimone, M. L., Clandinin, T. R. & Reddien, P. W. Hedgehog signaling regulates gene expression in planarian glia. eLife 5, e16996 (2016).

    Article  Google Scholar 

  37. 37.

    Roberts-Galbraith, R. H., Brubacher, J. L. & Newmark, P. A. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife 5, e17002 (2016).

    Article  Google Scholar 

  38. 38.

    Brandl, H. et al. PlanMine—a mineable resource of planarian biology and biodiversity. Nucleic Acids Res. 44, D764–D773 (2016).

    Article  Google Scholar 

  39. 39.

    Bonar, N. A. & Petersen, C. P. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development 144, 784–794 (2017).

    Article  Google Scholar 

  40. 40.

    Seebeck, F. et al. Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians. Development 144, 795–807 (2017).

    Article  Google Scholar 

  41. 41.

    King, R. S. & Newmark, P. A. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 13, 8 (2013).

    Article  Google Scholar 

  42. 42.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank Kejia Chen and Ke Chen for help with data analysis, R.H. Roberts-Galbraith and J.J. Collins III for experimental assistance during the early phase of this study and S. Granick, I. Riedel-Kruse, D.M. Sussman and P.N. Newmark for discussions. Plasmids that contain the planarian neuropeptide genes were provided by J.J. Collins III. This work is supported by the Burroughs Wellcome Fund through the CASI programme to B.W.

Author information

Affiliations

Authors

Contributions

J.Q. and B.W. designed the research, M.K. and B.W. performed the experiments, M.K., X.K. and B.W. analysed the data, X.K. performed the simulation, X.K. and J.Q. analysed the simulation results and all authors wrote the paper.

Corresponding authors

Correspondence to Jian Qin or Bo Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Corey O’Hern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, note and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khariton, M., Kong, X., Qin, J. et al. Chromatic neuronal jamming in a primitive brain. Nat. Phys. 16, 553–557 (2020). https://doi.org/10.1038/s41567-020-0809-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing