Abstract
Since the first observation of coherent quantum behaviour in a superconducting qubit, now more than 20 years ago, there have been substantial developments in the field of superconducting quantum circuits. One such advance is the introduction of the concepts of cavity quantum electrodynamics (QED) to superconducting circuits, to yield what is now known as circuit QED. This approach realizes in a single architecture the essential requirements for quantum computation, and has already been used to run simple quantum algorithms and to operate tens of superconducting qubits simultaneously. For these reasons, circuit QED is one of the leading architectures for quantum computation. In parallel to these advances towards quantum information processing, circuit QED offers new opportunities for the exploration of the rich physics of quantum optics in novel parameter regimes in which strongly nonlinear effects are readily visible at the level of individual microwave photons. We review circuit QED in the context of quantum information processing and quantum optics, and discuss some of the challenges on the road towards scalable quantum computation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Nakamura, Y., Pashkin, Y. & Tsai, J. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999). This paper reports the observation of coherent quantum dynamics in superconducting quantum circuits.
Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).
Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).
Martinis, J. M., Devoret, M. H. & Clarke, J. Quantum Josephson junctions and the dawn of artificial atoms. Nat. Phys. https://doi.org/10.1038/s41567-020-0829-5 (2020).
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004). This paper theoretically introduces the circuit QED architecture.
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). This paper experimentally demonstrates circuit QED, in particular reporting the observation of vacuum Rabi splitting.
Haroche, S., Brune, M. & Raimond, J. M. From cavity to circuit quantum electrodynamics. Nat. Phys. https://doi.org/10.1038/s41567-020-0812-1 (2020).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). This paper reports ‘quantum supremacy’ with transmon qubits and circuit QED-based dispersive readout.
Pozar, D. M. Microwave Engineering (Wiley, 2012).
Vool, U. & Devoret, M. Introduction to quantum electromagnetic circuits. Int. J. Circuit Theor. Appl. 45, 897–934 (2017).
Megrant, A. et al. Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012).
Vissers, M. R., Kline, J. S., Gao, J., Wisbey, D. S. & Pappas, D. P. Reduced microwave loss in trenched superconducting coplanar waveguides. Appl. Phys. Lett. 100, 082602 (2012).
Bruno, A. et al. Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl. Phys. Lett. 106, 182601 (2015).
Calusine, G. et al. Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Appl. Phys. Lett. 112, 062601 (2018).
Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).
Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Sheldon, S. et al. Characterizing errors on qubit operations via iterative randomized benchmarking. Phys. Rev. A 93, 012301 (2016).
Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999).
Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).
Gyenis, A. et al. Experimental realization of an intrinsically error-protected superconducting qubit. Preprint at https://arxiv.org/abs/1910.07542 (2019).
Kjaergaard, M. et al. Superconducting qubits: current state of play. Preprint at https://arxiv.org/abs/1905.13641 (2019).
Wendin, G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017).
Bloch, F. & Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940).
Devoret, M., Girvin, S. M. & Schoelkopf, R. J. Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys 16, 767–779 (2007).
Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011). This paper introduces the ‘3D transmon’.
Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y.-x & Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017).
Thompson, R., Rempe, G. & Kimble, H. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).
Boca, A. et al. Observation of the vacuum rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004).
Maunz, P. et al. Normal-mode spectroscopy of a single-bound-atom–cavity system. Phys. Rev. Lett. 94, 033002 (2005).
Gardiner, C. W. Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing. Phys. Rev. Lett. 56, 1917–1920 (1986).
Carmichael, H. J., Lane, A. S. & Walls, D. F. Resonance fluorescence from an atom in a squeezed vacuum. Phys. Rev. Lett. 58, 2539–2542 (1987).
Carmichael, H. J. Viewpoint: squeezed light reengineers resonance fluorescence. Physics 9, 77 (2019).
Turchette, Q. A., Georgiades, N. P., Hood, C. J., Kimble, H. J. & Parkins, A. S. Squeezed excitation in cavity QED: experiment and theory. Phys. Rev. A 58, 4056–4077 (1998).
Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).
Murch, K. W., Weber, S. J., Beck, K. M., Ginossar, E. & Siddiqi, I. Suppression of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013).
Toyli, D. M. et al. Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016).
Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008).
Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).
Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).
Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbruggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).
Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).
Campagne-Ibarcq, P. et al. A stabilized logical quantum bit encoded in grid states of a superconducting cavity. Preprint at https://arxiv.org/abs/1907.12487 (2019).
Blais, A. et al. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007).
Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).
Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).
Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).
Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).
Elder, S. S. et al. High-fidelity measurement of qubits encoded in multilevel superconducting circuits. Phys. Rev. X 10, 011001 (2020).
Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).
Sheldon, S., Magesan, E., Chow, J. M. & Gambetta, J. M. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A 93, 060302 (2016).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
Kitaev, A. Y. Fault-tolerant computation by anyons. Ann. Phys. 303, 2–30 (2003). This paper describes topologically protected logical qubits.
Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).
Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001).
Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).
Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).
Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).
Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).
Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).
Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).
Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016). This paper reports QEC with a bosonic ‘cat code’ that reaches the break-even point.
Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Yoder, T. J., Takagi, R. & Chuang, I. L. Universal fault-tolerant gates on concatenated stabilizer codes. Phys. Rev. X 6, 031039 (2016).
Kapit, E. Error-transparent quantum gates for small logical qubit architectures. Phys. Rev. Lett. 120, 050503 (2018).
Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361, 266–270 (2018).
Hann, C. T. et al. Robust readout of bosonic qubits in the dispersive coupling regime. Phys. Rev. A 98, 022305 (2018).
Reinhold, P. et al. Error-corrected gates on an encoded qubit. Preprint at https://arxiv.org/abs/1907.12327 (2019).
Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Preprint at https://arxiv.org/abs/1909.06803 (2019).
Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).
Puri, S. et al. Stabilized cat in a driven nonlinear cavity: a fault-tolerant error syndrome detector. Phys. Rev. X 9, 041009 (2019).
Puri, S. et al. Bias-preserving gates with stabilized cat qubits. Preprint at https://arxiv.org/abs/1905.00450 (2019).
Guillaud, J. & Mirrahimi, M. Repetition cat-qubits: fault-tolerant quantum computation with highly reduced overhead. Phys. Rev. X 9, 041053 (2019).
Grimm, A. et al. The Kerr-cat qubit: stabilization, readout, and gates. Preprint at https://arxiv.org/abs/1907.12131 (2019).
Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Preprint at https://arxiv.org/abs/1907.11729 (2019).
Chao, R. & Reichardt, B. W. Fault-tolerant quantum computation with few qubits. npj Quantum Inf. 4, 42 (2018).
Takita, M. et al. Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016).
Córcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).
Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). This paper is a pedagogical review of surface codes.
Litinski, D. & von Oppen, F. Quantum computing with Majorana fermion codes. Phys. Rev. B 97, 205404 (2018).
Litinski, D. & von Oppen, F. Lattice surgery with a twist: simplifying clifford gates of surface codes. Quantum 2, 62 (2018).
Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).
O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small surface codes under current and projected experimental noise. npj Quantum Inf. 3, 39 (2017).
Krastanov, S. et al. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev. A 92, 040303 (2015).
Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).
Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).
Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).
Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444–448 (2014).
Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016). This paper introduces the family of binomial error correction codes.
Leung, D. W., Nielsen, M. A., Chuang, I. L. & Yamamoto, Y. Approximate quantum error correction can lead to better codes. Phys. Rev. A 56, 2567–2573 (1997).
Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).
Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001). This paper introduces the GKP ‘grid’ states for bosonic QEC.
Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).
Albert, V. V. et al. Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346 (2018).
Vuillot, C., Asasi, H., Wang, Y., Pryadko, L. P. & Terhal, B. M. Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344 (2019).
Tuckett, D. K. et al. Tailoring surface codes for highly biased noise. Phys. Rev. X 9, 041031 (2019).
Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. Fault-tolerant thresholds for the surface code in excess of 5% under biased noise. Preprint at https://arxiv.org/abs/1907.02554 (2019).
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000). This paper introduces the ‘Divincenzo criteria’ that any quantum computer must obey.
Oliver, W. D. & Welander, P. B. Materials in superconducting quantum bits. MRS Bull. 38, 816–825 (2013).
Das, R. N. et al. Cryogenic qubit integration for quantum computing. In Proc. IEEE 68th Electronic Components and Technology Conference (ECTC) 504–514 (IEEE, 2018).
Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).
Jones, N. C. et al. Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012).
Corcoles, A. et al. Challenges and opportunities of near-term quantum computing systems. Preprint at https://arxiv.org/abs/1910.02894 (2019).
Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf. 3, 42 (2017).
Barden, J. et al. A 28nm bulk-CMOS 4-to-8GHz <2mW cryogenic pulse modulator for scalable quantum computing. In Proc. IEEE 2019 International Solid State Circuits Conference 456–458 (IEEE, 2019).
Leonard, E. et al. Digital coherent control of a superconducting qubit. Phys. Rev. Appl. 11, 014009 (2019).
Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).
O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).
Wang, C. S. et al. Quantum simulation of molecular vibronic spectra on a superconducting bosonic processor. Preprint at https://arxiv.org/abs/1908.03598 (2019).
Ma, R. et al. A dissipatively stabilized mott insulator of photons. Nature 566, 51–57 (2019).
Chiaro, B. et al. Growth and preservation of entanglement in a many-body localized system. Preprint at https://arxiv.org/abs/1910.06024 (2019).
Zheng, H., Silveri, M., Brierley, R. T., Girvin, S. M. & Lehnert, K. W. Accelerating dark-matter axion searches with quantum measurement technology. Preprint at https://arxiv.org/abs/1607.02529 (2016).
Wang, Z. et al. Quantum microwave radiometry with a superconducting qubit. Preprint at https://arxiv.org/abs/1909.12295 (2019).
Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).
Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).
Brecht, T. et al. Multilayer microwave integrate quantum circuits for scalable quantum computing. npj Quantum Inf. 2, 16002 (2016).
Acknowledgements
This work was undertaken thanks in part to funding from NSERC, Canada First Research Excellence Fund and the support from NSF DMR-1609326 and ARO W911NF-18-1-0212 is gratefully acknowledged. W.D.O. acknowledges funding in part by the US Army Research Office grant numbers W911NF-18-1-0411 and MURI W911NF-18-1-0218; the National Science Foundation grant number PHY-1720311; and the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force contract number FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing, editing and revision of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Blais, A., Girvin, S.M. & Oliver, W.D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020). https://doi.org/10.1038/s41567-020-0806-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-0806-z
This article is cited by
-
Integrated and DC-powered superconducting microcomb
Nature Communications (2024)
-
Protecting entanglement between logical qubits via quantum error correction
Nature Physics (2024)
-
Tunable exciton valley-pseudospin orders in moiré superlattices
Nature Communications (2024)
-
A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing
Nature Communications (2024)
-
Quantum video encryption based on bitplanes and improved Arnold scrambling
Quantum Information Processing (2024)