Abstract
The rise of quantum information science has provided new perspectives on quantum mechanics, as well as a common language for quantum engineering. The focus on platforms for the manipulation and processing of quantum information bridges between different research areas in physics as well as other disciplines. Such a crossover between borders is well embodied by the development of hybrid quantum systems, where heterogeneous physical systems are combined to leverage their individual strengths for the implementation of novel functionalities. In the microwave domain, the hybridization of various quantum degrees of freedom has been tremendously helped by superconducting quantum circuits, owing to their large zero-point field fluctuations, small dissipation, strong nonlinearity and design flexibility. These efforts take place by expanding the framework of circuit quantum electrodynamics. Here, we review recent research on the creation of hybrid quantum systems based on circuit quantum electrodynamics, encompassing mechanical oscillators, quantum acoustodynamics with surface acoustic waves, quantum magnonics and coupling between superconducting circuits and ensembles or single spins.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Bidirectional field-steering and atomic steering induced by a magnon mode in a qubit-photon system
Scientific Reports Open Access 11 September 2023
-
Coherent memory for microwave photons based on long-lived mechanical excitations
npj Quantum Information Open Access 11 August 2023
-
Dissipative dynamics of optomagnonic nonclassical features via anti-Stokes optical pulses: squeezing, blockade, anti-correlation, and entanglement
Scientific Reports Open Access 07 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).
Martinis, J. M., Devoret, M. H. & Clarke, J. Quantum Josephson junctions and the dawn of artificial atoms. Nat. Phys. https://doi.org/10.1038/s41567-020-0829-5 (2020).
Haroche, S. & Raimond, J.-M. Exploring the Quantum (Oxford Univ. Press, 2006).
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
Haroche, S., Brune, M. & Raimond, J. M. From cavity to circuit quantum electrodynamics. Nat. Phys. https://doi.org/10.1038/s41567-020-0812-1 (2020).
Clerk, A. A., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).
Poot, M. & van der Zant, H. S. Mechanical systems in the quantum regime. Phys. Rep. 511, 273–335 (2012).
Xiang, Z.-L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Cottet, A. et al. Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena. J. Phys. Condens. Matter 29, 433002 (2017).
Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Morton, J. J. L. & Bertet, P. Storing quantum information in spins and high-sensitivity ESR. J. Magn. Reson. 287, 128–139 (2018).
Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons — an overview of physical implementations. Preprint at https://arxiv.org/abs/1906.10255 (2019).
Safavi-Naeini, A. H., Thourhout, D. V., Baets, R. & Laer, R. V. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213–232 (2019).
Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019).
Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. https://doi.org/10.1038/s41567-020-0806-z (2020).
Filip, R. Quantum interface to a noisy system through a single kind of arbitrary Gaussian coupling with limited interaction strength. Phys. Rev. A 80, 022304 (2009).
Zhang, M., Zou, C.-L. & Jiang, L. Quantum transduction with adaptive control. Phys. Rev. Lett. 120, 020502 (2018).
Lau, H.-K. & Clerk, A. A. High-fidelity bosonic quantum state transfer using imperfect transducers and interference. npj Quantum Inf. 5, 31 (2019).
Lau, H.-K. & Clerk, A. A. Ground state cooling and high-fidelity quantum transduction via parametrically-driven bad-cavity optomechanics. Preprint at https://arxiv.org/abs/1904.12984 (2019).
Xiang, Z.-L., Zhang, M., Jiang, L. & Rabl, P. Intracity quantum communication via thermal microwave networks. Phys. Rev. X 7, 011035 (2017).
Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980).
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).
Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555–560 (2008).
Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).
Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009). This paper demonstrated efficient readout of a circuit QED system enabled by a Josephson parametric amplifier.
Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).
Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011). This paper showed that the radiation pressure force could cool a macroscopic mechanical oscillator to its motional ground state.
Teufel, J., Lecocq, F. & Simmonds, R. Overwhelming thermomechanical motion with microwave radiation pressure shot noise. Phys. Rev. Lett. 116, 013602 (2016).
Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).
Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
Pirkkalainen, J. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).
Lecocq, F., Teufel, J. D., Aumentado, J. & Simmonds, R. W. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nat. Phys. 11, 635–639 (2015).
Viennot, J. J., Ma, X. & Lehnert, K. W. Phonon-number-sensitive electromechanics. Phys. Rev. Lett. 121, 183601 (2018).
Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).
Goryachev, M. et al. Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature. Appl. Phys. Lett. 100, 243504 (2012).
Manenti, R. et al. Surface acoustic wave resonators in the quantum regime. Phys. Rev. B 93, 041411 (2016).
Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014). This work pioneered the studies on the quantum regime of surface acoustic waves.
Schuetz, M. J. A. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X 5, 031031 (2015).
Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).
Noguchi, A., Yamazaki, R., Tabuchi, Y. & Nakamura, Y. Qubit-assisted transduction for a detection of surface acoustic waves near the quantum limit. Phys. Rev. Lett. 119, 180505 (2017).
Bolgar, A. N. et al. Quantum regime of a two-dimensional phonon cavity. Phys. Rev. Lett. 120, 223603 (2018).
Moores, B. A., Sletten, L. R., Viennot, J. J. & Lehnert, K. W. Cavity quantum acoustic device in the multimode strong coupling regime. Phys. Rev. Lett. 120, 227701 (2018).
Satzinger, K. J. et al. Quantum control of surface acoustic wave phonons. Nature 563, 661–665 (2018).
Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic wave resonator. Nature 563, 666–670 (2018).
Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).
Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019). This paper demonstrated phonon-number resolving measurement of a nanomechanical oscillator interacting with a superconducting qubit in the strong dispersive regime.
Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon Fock states in a multimode cavity with a double-slit qubit. Phys. Rev. X 9, 021056 (2019).
Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).
Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 17, eaar4994 (2018).
Huebl, H. et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013).
Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).
Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014).
Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014).
Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405–408 (2015). This paper describes the demonstration of strong coupling between a magnon and a superconducting qubit.
Lachance-Quirion, D. et al. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet. Sci. Adv. 3, e1603150 (2017). Demonstration of strong dispersive coupling between magnons and a qubit as well as magnon-number resolving measurement.
Gambetta, J. et al. Qubit-photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys. Rev. A 74, 042318 (2006).
Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).
Crescini, N. et al. Operation of a ferromagnetic axion haloscope at m a = 58μev. Eur. Phys. J. C. 78, 703 (2018).
Flower, G., Bourhill, J., Goryachev, M. & Tobar, M. E. Broadening frequency range of a ferromagnetic axion haloscope with strongly coupled cavity-magnon polaritons. Phys. Dark Univ. 25, 100306 (2019).
Pfirrmann, M. et al. Magnons at low excitations: observation of incoherent coupling to a bath of two-level-systems. Phys. Rev. Res. 1, 032023(R) (2019).
Kosen, S., van Loo, A. F., Bozhko, D. A., Mihalceanu, L. & Karenowska, A. D. Microwave magnon damping in YIG films at millikelvin temperatures. APL Mater. 7, 101120 (2019).
Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016). Observation of the Purcell effect for spins.
Sigillito, A. J. et al. Fast, low-power manipulation of spin ensembles in superconducting microresonators. Appl. Phys. Lett. 104, 222407 (2014).
Eichler, C., Sigillito, A. J., Lyon, S. A. & Petta, J. R. Electron spin resonance at the level of 104 spins using low impedance superconducting resonators. Phys. Rev. Lett. 118, 037701 (2017).
Probst, S. et al. Inductive-detection electron-spin resonance spectroscopy with 65 spins/ \(\sqrt{\mathrm{Hz}}\) sensitivity. Appl. Phys. Lett. 111, 202604 (2017).
Budoyo, R. P. et al. Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 using a Josephson bifurcation amplifier: observation of hyperfine and quadrupole structures. Phys. Rev. Mater. 2, 011403 (2018).
Angerer, A. et al. Superradiant emission from colour centres in diamond. Nat. Phys. 14, 1168–1172 (2018).
Haikka, P., Kubo, Y., Bienfait, A., Bertet, P. & Moelmer, K. Proposal for detecting a single electron spin in a microwave resonator. Phys. Rev. A 95, 022306 (2017).
Bienfait, A. et al. Magnetic resonance with squeezed microwaves. Phys. Rev. X 7, 041011 (2017).
Grezes, C. et al. Towards a spin-ensemble quantum memory for superconducting qubits. C. R. Phys. 17, 693–704 (2016). Review of the experimental effort on quantum memories for microwave photons.
Afzelius, M., Sangouard, N., Johansson, G., Staudt, M. U. & Wilson, C. M. Proposal for a coherent quantum memory for propagating microwave photons. N. J. Phys. 15, 065008 (2013).
Julsgaard, B., Grezes, C., Bertet, P. & Molmer, K. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. Phys. Rev. Lett. 110, 250503 (2013).
Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010). This paper reports observation of strong coupling of a spin ensemble to a superconducting resonator.
Schuster, D. I. et al. High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105, 140501 (2010).
Amsüss, R. et al. Cavity QED with magnetically coupled collective spin states. Phys. Rev. Lett. 107, 060502 (2011).
Probst, S. et al. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110, 157001 (2013).
Zhu, X. et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).
Kubo, Y. et al. Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys. Rev. Lett. 107, 220501 (2011).
Grezes, C. et al. Multimode storage and retrieval of microwave fields in a spin ensemble. Phys. Rev. X 4, 021049 (2014).
Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014). Proposal for microwave-optical photon conversion based on a spin ensemble.
Fernandez-Gonzalvo, X., Chen, Y.-H., Yin, C., Rogge, S. & Longdell, J. J. Coherent frequency up-conversion of microwaves to the optical telecommunications band in an Er:YSO crystal. Phys. Rev. A 92, 062313 (2015).
Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018). This article describes the demonstration of strong single spin–photon coupling and dispersive readout of the electron spin state.
Samkharadze, N. et al. Strong spin–photon coupling in silicon. Science 359, 1123–1127 (2018).
Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).
Cottet, A. & Kontos, T. Spin quantum bit with ferromagnetic contacts for circuit QED. Phys. Rev. Lett. 105, 160502 (2010).
van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007). The physics of spins in semiconductor quantum dots is thoroughly reviewed in this article.
Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).
Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).
Viennot, J. J., Delbecq, M. R., Dartiailh, M. C., Cottet, a & Kontos, T. Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture. Phys. Rev. B 89, 165404 (2014).
Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Strong coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).
Stockklauser, A. et al. Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Phys. Rev. X 7, 011030 (2017).
Tokura, Y., van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006). The use of micromagnets for coherent spin control and spin–photon coupling can largely be attributed to this pioneering theoretical paper.
Trif, M., Golovach, V. N. & Loss, D. Spin dynamics in InAs nanowire quantum dots coupled to a transmission line. Phys. Rev. B 77, 045434 (2008).
Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).
Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).
Zheng, G. et al. Rapid gate-based spin read-out in silicon using an on-chip resonator. Nat. Nanotechnol. 14, 742–746 (2019).
Borjans, F., Croot, X., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave mediated interactions between distant electron spins. Nature 577, 195–198 (2019).
Lyon, S. A. Spin-based quantum computing using electrons on liquid helium. Phys. Rev. 74, 052338 (2006).
Koolstra, G., Yang, G. & Schuster, D. I. Coupling a single electron on superfluid helium to a superconducting resonator. Nat. Commun. 10, 5323 (2019).
Schuster, D. I., Fragner, A., Dykman, M. I., Lyon, S. A. & Schoelkopf, R. J. Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics. Phys. Rev. Lett. 105, 040503 (2010).
Andrews, R. W., Reed, A. P., Cicak, K., Teufel, J. D. & Lehnert, K. W. Quantum-enabled temporal and spectral mode conversion of microwave signals. Nat. Commun. 6, 10021 (2015).
Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).
Acknowledgements
P.B. acknowledges support from the European Research Council under grant 615767 (CIRQUSS), and from the Agence Nationale de la Recherche under grants QIPSE and NASNIQ. J.R.P. acknowledges support from Army Research Office grant W911NF-15-1-0149 and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4535. Y.N. acknowledges supports from JST ERATO (no. JPMJER1601) and JSPS KAKENHI (no. 26220601).
Author information
Authors and Affiliations
Contributions
All authors contributed to the writing, editing and revision of the manuscript.
Corresponding author
Ethics declarations
Competing interests
J.R.P. and Princeton University have filed a non-provisional patent application related to spin–photon transduction (US patent application no. 16534431).
Additional information
Peer review information Nature Physics thanks Peter Leek and Peter Rabl for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Clerk, A.A., Lehnert, K.W., Bertet, P. et al. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020). https://doi.org/10.1038/s41567-020-0797-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-0797-9
This article is cited by
-
Phononic bath engineering of a superconducting qubit
Nature Communications (2023)
-
Bidirectional field-steering and atomic steering induced by a magnon mode in a qubit-photon system
Scientific Reports (2023)
-
A squeezed mechanical oscillator with millisecond quantum decoherence
Nature Physics (2023)
-
Coherent memory for microwave photons based on long-lived mechanical excitations
npj Quantum Information (2023)
-
Granular aluminium nanojunction fluxonium qubit
Nature Materials (2023)