Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum diffusion of microcavity solitons

Abstract

Coherently pumped (Kerr) solitons in an ideal optical microcavity are expected to undergo random quantum motion that determines fundamental performance limits in applications of the soliton microcombs1. Here this random walk and its impact on Kerr soliton timing jitter are studied experimentally. The quantum limit is discerned by measuring the relative position of counter-propagating solitons2. Their relative motion features weak interactions and also presents common-mode suppression of technical noise, which typically hides the quantum fluctuations. This is in contrast to co-propagating solitons, which are found to have relative timing jitter well below the quantum limit of a single soliton on account of strong correlation of their mutual motion. Good agreement is found between theory and experiment. The results establish the fundamental limits to timing jitter in soliton microcombs and provide new insights on multisoliton physics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CP solitons and measurement of quantum-limited motion.
Fig. 2: Measured and theoretical jitter spectral density.
Fig. 3: Relative motion of CoP soliton pairs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used for this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Matsko, A. B. & Maleki, L. On timing jitter of mode locked Kerr frequency combs. Opt. Express 21, 28862–28876 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Article  Google Scholar 

  3. 3.

    Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    ADS  Article  Google Scholar 

  4. 4.

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Kippenberg, T., Spillane, S. & Vahala, K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Article  Google Scholar 

  9. 9.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  10. 10.

    Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photon. 12, 699 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Wai, P., Menyuk, C. R., Lee, Y. & Chen, H. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464–466 (1986).

    ADS  Article  Google Scholar 

  12. 12.

    Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    ADS  Article  Google Scholar 

  13. 13.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Wang, Y. et al. Universal mechanism for the binding of temporal cavity solitons. Optica 4, 855–863 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Schibli, T. et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation. Opt. Lett. 28, 947–949 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    Kim, J. & Kaertner, F. X. Attosecond-precision ultrafast photonics. Laser Photon. Rev. 4, 432–456 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Bao, C. et al. Forced oscillatory motion of trapped counter-propagating solitons. Preprint at https://arxiv.org/abs/2003.00573 (2020).

  25. 25.

    Barnes, J. A. et al. Characterization of frequency stability. IEEE Trans. Instrum. Meas. 20, 105–120 (1971).

    Article  Google Scholar 

  26. 26.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Rosanov, N. & Khodova, G. Diffractive autosolitons in nonlinear interferometers. J. Opt. Soc. Am. B 7, 1057–1065 (1990).

    ADS  Article  Google Scholar 

  28. 28.

    Schäpers, B., Feldmann, M., Ackemann, T. & Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 85, 748–751 (2000).

    ADS  Article  Google Scholar 

  29. 29.

    Vladimirov, A. G., McSloy, J. M., Skryabin, D. V. & Firth, W. J. Two-dimensional clusters of solitary structures in driven optical cavities. Phys. Rev. E 65, 046606 (2002).

    ADS  Article  Google Scholar 

  30. 30.

    Vahed, H. et al. Phase-mediated long-range interactions of cavity solitons in a semiconductor laser with a saturable absorber. Phys. Rev. A 84, 063814 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Turaev, D., Vladimirov, A. & Zelik, S. Long-range interaction and synchronization of oscillating dissipative solitons. Phys. Rev. Lett. 108, 263906 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Garbin, B., Javaloyes, J., Tissoni, G. & Barland, S. Topological solitons as addressable phase bits in a driven laser. Nat. Commun. 6, 5915 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Garbin, B., Tissoni, G. & Barland, S. Excitable pulses and diffusion of localized states in a driven semiconductor laser with delay. Cybern. Phys. 7, 96–101 (2018).

    Article  Google Scholar 

  34. 34.

    Drummond, P., Shelby, R., Friberg, S. & Yamamoto, Y. Quantum solitons in optical fibres. Nature 365, 307–313 (1993).

    ADS  Article  Google Scholar 

  35. 35.

    Jeong, D. et al. Ultralow jitter silica microcomb. Optica 7, 1108–1111 (2020).

    ADS  Article  Google Scholar 

  36. 36.

    Jia, K. et al. Photonic flywheel in a monolithic fiber resonator. Phys. Rev. Lett. 125, 143902 (2020).

    ADS  Article  Google Scholar 

  37. 37.

    Paschotta, R. Noise of mode-locked lasers (part I): numerical model. Appl. Phys. B 79, 153–162 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research (FA9550-18-1-0353) and the Kavli Institute of Nanoscience. C.B. acknowledges a postdoctoral fellowship from the Resnick Institute at Caltech. The work of A.B.M. was carried out at the JPL, Caltech, under a contract with the National Aeronautics and Space Administration.

Author information

Affiliations

Authors

Contributions

C.B., K.Ş., A.B.M., F.X.K. and K.J.V. conceived the project. C.B. ran the experiments with assistance from B.S., Z.Y. and Q.-F.Y. M.-G.S., H.W. and L.W. prepared the samples. K.Ş., A.D. and F.X.K. built the BOC. The project was supervised by K.J.V.

Corresponding author

Correspondence to Kerry J. Vahala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Giovanna Tissoni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, C., Suh, MG., Shen, B. et al. Quantum diffusion of microcavity solitons. Nat. Phys. 17, 462–466 (2021). https://doi.org/10.1038/s41567-020-01152-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing