Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing bulk topological invariants using leaky photonic lattices

Abstract

Topological invariants characterizing filled Bloch bands underpin electronic topological insulators and analogous artificial lattices for Bose–Einstein condensates, photonics and acoustic waves. In bosonic systems, there is no Fermi exclusion principle to enforce uniform band filling, which makes measuring their bulk topological invariants challenging. Here we show how to achieve the controllable filling of bosonic bands using leaky photonic lattices. Leaky photonic lattices host transitions between bound and radiative modes at a critical energy, which plays a role analogous to the electronic Fermi level. Tuning this effective Fermi level into a bandgap results in the disorder-robust dynamical quantization of bulk topological invariants such as the Chern number. Our findings establish leaky lattices as a highly flexible platform for exploring topological and non-Hermitian wave physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the method to measure topological invariants using leaky lattices.
Fig. 2: Quasi-normal mode spectrum of a one-dimensional lattice.
Fig. 3: Leaky SSH lattice.
Fig. 4: Measurement of Chern numbers using the leaky Haldane model.
Fig. 5: Array of ten slab waveguides for implementing the SSH model.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used to perform the numerical simulations within this paper is available from the corresponding author upon reasonable request.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  3. Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    Article  Google Scholar 

  4. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article  Google Scholar 

  5. Hu, W. et al. Measurement of a topological edge invariant in a microwave network. Phys. Rev. X 5, 011012 (2015).

    Google Scholar 

  6. Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of topological invariants in a 2D photonic system. Nat. Photon. 10, 180–183 (2016).

    Article  ADS  Google Scholar 

  7. Bardyn, C.-E., Huber, S. D. & Zilberberg, O. Measuring topological invariants in small photonic lattices. New J. Phys. 16, 123013 (2014).

    Article  ADS  Google Scholar 

  8. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  Google Scholar 

  9. Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article  Google Scholar 

  10. Tarnowski, M. et al. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun. 10, 1728 (2019).

    Article  ADS  Google Scholar 

  11. Ching, E. S. C. et al. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70, 1545–1554 (1998).

    Article  ADS  Google Scholar 

  12. Hu, J. & Menyuk, C. R. Understanding leaky modes: slab waveguide revisited. Adv. Opt. Photon. 1, 58–106 (2009).

    Article  Google Scholar 

  13. Monticone, F. & Alù, A. Leaky-wave theory, techniques, and applications: from microwaves to visible frequencies. Proc. IEEE 103, 793–821 (2015).

    Article  Google Scholar 

  14. Stowell, D. & Tausch, J. Variational formulation for guided and leaky modes in multilayer dielectric waveguides. Commun. Comput. Phys. 7, 564–579 (2010).

    Article  MATH  Google Scholar 

  15. Powell, D. A. Interference between the modes of an all-dielectric meta-atom. Phys. Rev. Appl. 7, 034006 (2017).

    Article  ADS  Google Scholar 

  16. Pick, A. & Moiseyev, N. Polarization dependence of the propagation constant of leaky guided modes. Phys. Rev. A 97, 043854 (2018).

    Article  ADS  Google Scholar 

  17. Lalanne, P., Yan, W., Vynck, K., Sauvan, C. & Hugonin, J.-P. Light interaction with photonic and plasmonic resonances. Laser Photon. Rev. 12, 1700113 (2018).

    Article  ADS  Google Scholar 

  18. Fukui, T., Hatsugai, Y. & Suzuki, H. Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn 74, 1674–1677 (2005).

    Article  ADS  Google Scholar 

  19. Bianco, R. & Resta, R. Mapping topological order in coordinate space. Phys. Rev. B 84, 241106(R) (2011).

    Article  ADS  Google Scholar 

  20. Ringel, Z. & Kraus, Y. E. Determining topological order from local ground-state correlation function. Phys. Rev. B 83, 245115 (2011).

    Article  ADS  Google Scholar 

  21. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  22. Golshani, M. et al. Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014).

    Article  ADS  Google Scholar 

  23. Longhi, S., Gatti, D. & Della Valle, G. Non-Hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge field. Phys. Rev. B 92, 094204 (2015).

    Article  ADS  Google Scholar 

  24. Longhi, S. Non-Hermitian tight-binding network engineering. Phys. Rev. A 93, 022102 (2016).

    Article  ADS  Google Scholar 

  25. Leykam, D., Flach, S. & Chong, Y. D. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017).

    Article  ADS  Google Scholar 

  26. Mukherjee, S. et al. Dissipatively coupled waveguide networks for coherent diffusive photonics. Nat. Commun. 8, 1909 (2017).

    Article  ADS  Google Scholar 

  27. Esaki, K., Sato, M., Hasebe, K. & Kohmoto, M. Edge states and topological phases in non-Hermitian systems. Phys. Rev. B 84, 205128 (2011).

    Article  ADS  Google Scholar 

  28. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    Google Scholar 

  29. Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Article  ADS  Google Scholar 

  30. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  Google Scholar 

  31. Yoshida, T. & Hatsugai, Y. Exceptional rings protected by emergent symmetry for mechanical systems. Phys. Rev. B 100, 054109 (2019).

    Article  ADS  Google Scholar 

  32. Tisseur, F. & Meerbergen, K. The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Atala, M. et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014).

    Article  Google Scholar 

  34. Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  35. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

    Article  ADS  Google Scholar 

  36. Bartal, G. et al. Brillouin zone spectroscopy of nonlinear photonic lattices. Phys. Rev. Lett. 94, 163902 (2005).

    Article  ADS  Google Scholar 

  37. Rudner, M. S. & Levitov, L. S. Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009).

    Article  ADS  Google Scholar 

  38. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article  ADS  Google Scholar 

  39. Wang, Y. et al. Direct observation of topology from single-photon dynamics. Phys. Rev. Lett. 112, 193903 (2019).

    Article  ADS  Google Scholar 

  40. St-Jean, P. et al. Measuring topological invariants in polaritonic graphene. Preprint at https://arxiv.org/abs/2002.09528 (2020).

  41. Cerjan, A., Hsu, C. W. & Rechtsman, M. C. Bound states in the continuum through environmental design. Phys. Rev. Lett. 123, 023902 (2019).

    Article  ADS  Google Scholar 

  42. Wang, Q. et al. Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal. Phys. Rev. B 93, 041415(R) (2016).

    Article  ADS  Google Scholar 

  43. Longhi, S. Probing topological phases in waveguide superlattices. Opt. Lett. 44, 2530–2533 (2019).

    Article  ADS  Google Scholar 

  44. Noh, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120, 063902 (2018).

    Article  ADS  Google Scholar 

  45. Blanco-Redondo, A. et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states. Phys. Rev. Lett. 116, 163901 (2016).

    Article  ADS  Google Scholar 

  46. Caio, M. D., Möller, G., Cooper, N. R. & Bhaseen, M. J. Topological marker currents in Chern insulators. Nat. Phys. 15, 257–261 (2019).

    Article  Google Scholar 

  47. Viyuela, O., Rivas, A. & Martin-Delgado, M. A. Uhlmann phase as a topological measure for one-dimensional fermion systems. Phys. Rev. Lett. 112, 130401 (2014).

    Article  ADS  Google Scholar 

  48. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    Article  Google Scholar 

  49. Vanderbilt, D. Berry Phases in Electronic Structure Theory (Cambridge Univ. Press, 2018).

  50. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Cerjan, Z. Chen, Y. Chong and M. Rechstman for illuminating discussions. D.L. was supported by the Institute for Basic Science (IBS-R024-Y1 and IBS-R024-D1). D.A.S. acknowledges funding from the Australian Research Council’s Early Career Researcher Award (DE190100430) and the Russian Science Foundation (Grant No. 20-72-00148).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and D.A.S. both performed the research and wrote the manuscript.

Corresponding author

Correspondence to Daniel Leykam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Leaky photonic lattice design for laser-written waveguides.

(a) Schematic of a leaky photonic lattice formed by an array of 18 primary waveguides (red) weakly coupled to auxiliary arrays forming the environment. The alternating position of the environment arrays above and below the primary array can be used to minimise unwanted direct coupling between the auxiliary arrays. (b) Corresponding tight binding model. (c,d,e) Dynamics of observables in the primary array: (c) the total norm \({\mathcal{N}}={\sum }_{m}| {\psi }_{m}{| }^{2}\), (d) the mean displacement \(\Delta x={\sum }_{m}(m-x(0))| {\psi }_{m}{| }^{2}/{\mathcal{N}}\), and (e) the Zak phase ν. Error bars in (d,e) indicate one standard deviation obtained using an ensemble of 100 disorder realizations.

Extended Data Fig. 2 Leaky photonic lattice design for silicon photonics.

(a) Schematic of a dimerized array of 10 silicon waveguides with labelled dimensions. Trivial and nontrivial arrangements differ by the intersite gaps ordering: g1 > g2 (trivial), g1 < g2 (nontrivial). (b,c) Field profiles of eigenmodes from the upper (b, neff = 1.8154) and lower bands (c, neff = 1.6735 − 0.0014i) in the trivial array. (d) Power and (e,f) Zak phase obtained from the field projection operator summed over excitations of the 5th and 6th waveguides in the trivial (e, blue curves) and nontrivial (f, gold curves) arrays. For comparison, grey curves in (e,f) show the Zak phase estimated from the single 5th waveguide excitation.

Supplementary information

Supplementary Information

Discussion and Supplementary Fig 1.

Source data

Source Data Fig. 2

Source data for Fig. 2c,d.

Source Data Fig. 3

Source data for Fig. 3d,e.

Source Data Fig. 4

Source data for Fig. 4b,c.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leykam, D., Smirnova, D.A. Probing bulk topological invariants using leaky photonic lattices. Nat. Phys. 17, 632–638 (2021). https://doi.org/10.1038/s41567-020-01144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01144-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing