Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Muon colliders to expand frontiers of particle physics

Muon colliders offer enormous potential for the exploration of the particle physics frontier but are challenging to realize. A new international collaboration is forming to make such a muon collider a reality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Energy efficiency of present and future colliders.
Fig. 2: Schematic layout of a 10-TeV-class muon collider complex.
Fig. 3: Ionization cooling-channel scheme.


  1. 1.

    Irvine, J. & Martin, B. Res. Policy 13, 311–342 (1984).

    Article  Google Scholar 

  2. 2.

    The 2020 Update of the European Strategy for Particle Physics (European Strategy Group, 2020);

  3. 3.

    Shiltsev, V. & Zimmermann, F. Rev. Mod. Phys. (in the press); preprint at (2020).

  4. 4.

    European Strategy for Particle Physics Preparatory Group Preprint at (2019).

  5. 5.

    Benedikt, M. et al. Eur. Phys. J. Spec. Top. 228, 755–1107 (2019).

    Article  Google Scholar 

  6. 6.

    Tikhonin, F. F. JINR Report P2-4120 (Dubna, 1968).

  7. 7.

    Budker, G. I. Accelerators and colliding beams. In Proc. 7th International Conference on High-Energy Accelerators Vol. 1 33–39 (1970).

  8. 8.

    Ankenbrandt, C. et al. Phys. Rev. ST Accel. Beams 2, 081001 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    Bogomilov, M. et al. Nature 578, 53–59 (2020).

    Article  Google Scholar 

  10. 10.

    Geer, S. Annu. Rev. Nucl. Part. Sci. 59, 347–365 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Palmer, R. B. Rev. Accel. Sci. Technol. 7, 137–159 (2014).

    Article  Google Scholar 

  12. 12.

    King, B. J. AIP Conf. Proc. 530, 165–180 (2000).

    ADS  Article  Google Scholar 

  13. 13.

    Alesini, D. et al. Preprint at (2019).

  14. 14.

    Benedikt, M. & Zimmermann, F. Nat. Rev. Phys. 1, 238–240 (2019).

    Article  Google Scholar 

  15. 15.

    Geer, S. Phys. Rev. D 57, 6989–6997 (1998).

    ADS  Article  Google Scholar 

  16. 16.

    Choubey, S. et al. Preprint at (2011).

  17. 17.

    Delahaye, J.-P. et al. J. Instrum. 13, T06003 (2018).

    Article  Google Scholar 

  18. 18.

    Barger, V., Berger, M., Gunion, J. & Han, T. Nucl. Phys. B 51, 13–31 (1996).

    Article  Google Scholar 

  19. 19.

    Delahaye, J. P. et al. Preprint at (2019).

  20. 20.

    Buttazzo, D. et al. J. High Energy Phys. 2018, 144 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Costantini, A. et al. J. High Energy Phys. 2020, 80 (2020).

    Article  Google Scholar 

  22. 22.

    Chiesa, M. et al. J. High Energy Phys. 2020, 98 (2020).

    Article  Google Scholar 

  23. 23.

    Bartosik, N. et al. J. Instrum. 15, P05001 (2020).

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to K. R. Long or D. Lucchesi or M. A. Palmer or N. Pastrone or D. Schulte or V. Shiltsev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, K.R., Lucchesi, D., Palmer, M.A. et al. Muon colliders to expand frontiers of particle physics. Nat. Phys. 17, 289–292 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing