Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2

Abstract

The recent observation of superconductivity in thin-film infinite-layer nickelates1,2,3 offers a different angle from which to investigate superconductivity in layered oxides4. A wide range of candidate models have been proposed5,6,7,8,9,10, which emphasize single- or multi-orbital electronic structure, Kondo or Hund’s coupling and analogies to cuprates. Further experimental characterization of the superconducting state is needed to develop a full understanding of the nickelates. Here we use magnetotransport measurements to probe the superconducting anisotropy in Nd0.775Sr0.225NiO2. We find that the upper critical field is surprisingly isotropic at low temperatures despite the layered crystal structure. In a magnetic field, the superconductivity is strongly Pauli-limited, such that the paramagnetic effect dominates over orbital de-pairing. Underlying this isotropic response is a substantial anisotropy in the superconducting coherence length, which is at least four times longer in-plane than out-of-plane. A prominent low-temperature upturn in the upper critical field indicates the presence of an unconventional ground state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Structure and magnetotransport properties of thin-film Nd0.775Sr0.225NiO2.
Fig. 2: Hc2 versus T phase diagram for Nd0.775Sr0.225NiO2.
Fig. 3: Transport signatures of vortex motion, and the magnetic field dependence of the activation energy.
Fig. 4: Hc versus T phase diagram and temperature dependence of Hc2 near Tc.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  ADS  Google Scholar 

  2. Li, D. et al. Superconducting dome in Nd1–xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Article  ADS  Google Scholar 

  3. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1–xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article  ADS  Google Scholar 

  4. Norman, M. R. Entering the nickel age of superconductivity. Physics 13, 85 (2020).

    Article  Google Scholar 

  5. Lee, K. -W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article  ADS  Google Scholar 

  6. Botana, A. S. & Norman, M. R. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys. Rev. X 10, 011024 (2020).

    Google Scholar 

  7. Wu, X. et al. Robust \(d_{x^2 - y^2}\)-wave superconductivity of infinite-layer nickelates. Phys. Rev. B 101, 060504 (2020).

    Article  ADS  Google Scholar 

  8. Jiang, M., Berciu, M. & Sawatzky, G. A. Critical nature of the Ni spin state in doped NdNiO2. Phys. Rev. Lett. 124, 207004 (2020).

    Article  ADS  Google Scholar 

  9. Bernardini, F., Olevano, V. & Cano, A. Magnetic penetration depth and Tc in superconducting nickelates. Phys. Rev. Res. 2, 013219 (2020).

    Article  Google Scholar 

  10. Zhang, G. -M., Yang, Y. -F. & Zhang, F. -C. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys. Rev. B 101, 20501 (2020).

    Article  ADS  Google Scholar 

  11. Ihara, H. et al. How to make superconducting-anisotropy least in high-Tc cuprate superconductors. Physica C 282, 1973–1974 (1997).

    Article  ADS  Google Scholar 

  12. Yoshida, K., Maeno, Y., Nishizaki, S. & Fujita, T. Anisotropic superconductivity of Sr2RuO4. Physica C 263, 519–522 (1996).

    Article  ADS  Google Scholar 

  13. Chou, F. C. et al. Thermodynamic and transport measurements of superconducting Na0.3CoO2·1.3H2O single crystals prepared by electrochemical deintercalation. Phys. Rev. Lett. 92, 157004 (2004).

    Article  ADS  Google Scholar 

  14. Yuan, H. Q. et al. Nearly isotropic superconductivity in (Ba,K)Fe2As2. Nature 457, 565–568 (2009).

    Article  ADS  Google Scholar 

  15. Aslamazov, L. G. & Larkin, A. I. Effect of fluctuations on the properties of a superconductor above the critical temperature. Sov. Phys. Solid State 10, 875–880 (1968).

    Google Scholar 

  16. Fulde, P. & Maki, K. Fluctuations in high field superconductors. Z. Phys. 238, 233–248 (1970).

    Article  ADS  Google Scholar 

  17. Palstra, T. T. M., Batlogg, B., van Dover, R. B., Schneemeyer, L. F. & Waszczak, J. V. Dissipative flux motion in high-temperature superconductors. Phys. Rev. B 41, 6621–6632 (1990).

    Article  ADS  Google Scholar 

  18. Kim, J. -J. et al. Flux-creep dissipation in epitaxial YBa2Cu3O7−δ film: magnetic-field and electrical-current dependence. Phys. Rev. B 43, 2962–2967 (1991).

    Article  ADS  Google Scholar 

  19. Brandow, B. Characteristic features of the exotic superconductors. Phys. Rep. 296, 1–63 (1998).

    Article  ADS  Google Scholar 

  20. Maloney, M. D., De La Cruz, F. & Cardona, M. Superconducting parameters and size effects of aluminum films and foils. Phys. Rev. B 5, 3558–3572 (1972).

    Article  ADS  Google Scholar 

  21. Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    Article  ADS  Google Scholar 

  22. Harper, F. E. & Tinkham, M. The mixed state in superconducting thin films. Phys. Rev. 172, 441–450 (1968).

    Article  ADS  Google Scholar 

  23. Kim, M., Kozuka, Y., Bell, C., Hikita, Y. & Hwang, H. Y. Intrinsic spin–orbit coupling in superconducting δ-doped SrTiO3 heterostructures. Phys. Rev. B 86, 085121 (2012).

    Article  ADS  Google Scholar 

  24. Wu, X. S., Adams, P. W., Yang, Y. & McCarley, R. L. Spin proximity effect in ultrathin superconducting Be–Au bilayers. Phys. Rev. Lett. 96, 127002 (2006).

    Article  ADS  Google Scholar 

  25. Shalom, M. B., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin–orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Article  ADS  Google Scholar 

  26. Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).

    Article  ADS  Google Scholar 

  27. Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).

    Article  ADS  Google Scholar 

  28. Maki, K. & Tsuneto, T. Pauli paramagnetism and superconducting state. Prog. Theor. Phys. 31, 945–956 (1964).

    Article  ADS  Google Scholar 

  29. Tedrow, P. M., Meservey, R. & Schwartz, B. B. Experimental evidence for a first-order magnetic transition in thin superconducting aluminum films. Phys. Rev. Lett. 24, 1004–1007 (1970).

    Article  ADS  Google Scholar 

  30. Zocco, D. A., Grube, K., Eilers, F., Wolf, T. & Löhneysen, H. V. Pauli-limited multiband superconductivity in KFe2A2. Phys. Rev. Lett. 111, 057007 (2013).

    Article  ADS  Google Scholar 

  31. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin–orbit effects. Phys. Rev. 147, 295–302 (1966).

    Article  ADS  Google Scholar 

  32. Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 67, 184515 (2003).

    Article  ADS  Google Scholar 

  33. Matsuda, Y. & Shimahara, H. Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn 76, 051005 (2007).

    Article  ADS  Google Scholar 

  34. Lortz, R. et al. Calorimetric evidence for a Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in the layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett. 99, 187002 (2007).

    Article  ADS  Google Scholar 

  35. Tedrow, P. M. & Meservey, R. Measurement of the supercooling curve of a paramagnetically limited superconductor. Phys. Lett. 63A, 398–400 (1977).

    Article  ADS  Google Scholar 

  36. Lee, K. et al. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).

    Article  ADS  Google Scholar 

  37. Goodge, B. H. et al. Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates. Preprint at https://arxiv.org/abs/2005.02847 (2020).

Download references

Acknowledgements

We thank R. L. Greene, A. Kapitulnik, S. A. Kivelson, P. B. Littlewood, B. Maiorov, G. A. Sawatzky, H. Takagi, R. Thomale, A. Viswanathan and Y.-H. Zhang for discussions. The work at SLAC and Stanford was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (contract no. DE-AC02-76SF00515) and the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems Initiative (grant no. GBMF9072, synthesis equipment). B.H.G. and L.F.K. acknowledge support by the US Department of Defense Air Force Office of Scientific Research (no. FA 9550-16-1-0305). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the US National Science Foundation (NSF) MRSEC Program (no. DMR-1719875). The FEI Titan Themis 300 was acquired through NSF grant no. MRI-1429155, with additional support from Cornell University, the Weill Institute and the Kavli Institute at Cornell. The Thermo Fisher Helios G4 X focused ion beam was acquired with support from the NSF Platform for Accelerated Realization, Analysis and Discovery of Interface Materials (PARADIM) under Cooperative Agreement no. DMR-1539918.

Author information

Authors and Affiliations

Authors

Contributions

D.L., K.L. and M.O. grew the nickelate films and conducted the reduction experiments and structural characterization. B.H.G. and L.F.K. conducted electron microscopy. B.Y.W. performed the transport measurements and analysis with M.R.B. B.Y.W., S.P.H. and H.Y.H. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Bai Yang Wang or Harold Y. Hwang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Neil Harrison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Table 1 and Sections 1–5.

Source data

Source Data Fig. 1

Resistivity superconducting transition under magnetic fields.

Source Data Fig. 2

Upper critical field as function of temperature.

Source Data Fig. 3

Arrhenius plot of resistivity transition and activation energy of dissipative vortex motion.

Source Data Fig. 4

Magnetic field versus temperature phase diagram and extraction of electron susceptibility.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, B.Y., Li, D., Goodge, B.H. et al. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat. Phys. 17, 473–477 (2021). https://doi.org/10.1038/s41567-020-01128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01128-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing