Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium

Abstract

Understanding and classifying non-equilibrium many-body phenomena, analogously to the classification of equilibrium states of matter into universality classes1,2, is an outstanding problem in physics. From stellar matter to financial markets, any many-body system can be out of equilibrium in a myriad of ways, and many are difficult to experiment on. It is therefore a major goal to establish universal principles that apply to different phenomena and physical systems. For equilibrium states, the universality seen in the self-similar spatial scaling of systems close to phase transitions lies at the heart of their classification. Recent theoretical work3,4,5,6,7,8,9,10,11,12,13,14 and experimental evidence15,16 suggest that isolated many-body systems far from equilibrium generically exhibit dynamic (spatiotemporal) self-similar scaling, akin to turbulent cascades17 and the Family–Vicsek scaling in classical surface growth18,19. Here we observe bidirectional dynamic scaling in an isolated quench-cooled atomic Bose gas; as the gas thermalizes and undergoes Bose–Einstein condensation, it shows self-similar net flows of particles towards the infrared (smaller momenta) and energy towards the ultraviolet (smaller length scales). For both infrared and ultraviolet dynamics we find that the scaling exponents are independent of the strength of the interparticle interactions that drive the thermalization.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Bidirectional thermalization in an isolated gas.
Fig. 2: Self-similar scaling dynamics.
Fig. 3: Universality for different interaction strengths.
Fig. 4: Quasi-condensation and phase ordering.

Data availability

The data that support the findings of this study are available in the Apollo repository (https://doi.org/10.17863/CAM.53984). Any additional information is available from the corresponding authors upon reasonable request.

References

  1. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    ADS  Google Scholar 

  2. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  3. Micha, R. & Tkachev, I. I. Turbulent thermalization. Phys. Rev. D 70, 043538 (2004).

    ADS  Google Scholar 

  4. Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    ADS  Google Scholar 

  5. Nowak, B., Schole, J., Sexty, D. & Gasenzer, T. Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A 85, 043627 (2012).

    ADS  Google Scholar 

  6. Nowak, B., Schole, J. & Gasenzer, T. Universal dynamics on the way to thermalization. New J. Phys. 16, 093052 (2014).

    ADS  MATH  Google Scholar 

  7. Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett. 114, 061601 (2015).

    ADS  Google Scholar 

  8. Piñeiro Orioli, A., Boguslavski, K. & Berges, J. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D 92, 025041 (2015).

    ADS  MathSciNet  Google Scholar 

  9. Chantesana, I., Piñeiro Orioli, A. & Gasenzer, T. Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A 99, 043620 (2019).

    ADS  Google Scholar 

  10. Mikheev, A. N., Schmied, C.-M. & Gasenzer, T. Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A 99, 063622 (2019).

    ADS  Google Scholar 

  11. Schmied, C.-M., Mikheev, A. N. & Gasenzer, T. Non-thermal fixed points: universal dynamics far from equilibrium. Int. J. Mod. Phys. A 34, 1941006 (2019).

    ADS  MathSciNet  Google Scholar 

  12. Bhattacharyya, S., Rodriguez-Nieva, J. F. & Demler, E. Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett. 125, 230601 (2020).

    ADS  MathSciNet  Google Scholar 

  13. Berges, J., Boguslavski, K., Mace, M. & Pawlowski, J. M. Gauge-invariant condensation in the nonequilibrium quark-gluon plasma. Phys. Rev. D 102, 034014 (2020).

    ADS  MathSciNet  Google Scholar 

  14. Fujimoto, K., Hamazaki, R. & Kawaguchi, Y. Family–Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett. 124, 210604 (2020).

    ADS  Google Scholar 

  15. Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563, 217–220 (2018).

    ADS  Google Scholar 

  16. Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225–229 (2018).

    ADS  Google Scholar 

  17. Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence (Springer, 1992).

  18. Family, F. & Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75–L81 (1985).

    ADS  Google Scholar 

  19. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986).

    ADS  MATH  Google Scholar 

  20. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  Google Scholar 

  21. Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).

    ADS  Google Scholar 

  22. Langen, T., Geiger, R. & Schmiedmayer, J. Ultracold atoms out of equilibrium. Annu. Rev. Condens. Matter Phys. 6, 201–217 (2015).

    ADS  Google Scholar 

  23. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

    ADS  Google Scholar 

  24. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    ADS  Google Scholar 

  25. Eigen, C. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018).

    ADS  Google Scholar 

  26. Langen, T. et al. Experimental observation of a generalized Gibbs ensemble. Science 348, 207–211 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  27. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    ADS  Google Scholar 

  28. Snoke, D. W. & Wolfe, J. P. Population dynamics of a Bose gas near saturation. Phys. Rev. B 39, 4030–4037 (1989).

    ADS  Google Scholar 

  29. Stoof, H. T. C. Formation of the condensate in a dilute Bose gas. Phys. Rev. Lett. 66, 3148–3151 (1991).

    ADS  Google Scholar 

  30. Svistunov, B. V. Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Moscow Phys. Soc. 1, 373–390 (1991).

    Google Scholar 

  31. Kagan, Yu. M., Svistunov, B. V. & Shlyapnikov, G. V. Kinetics of Bose condensation in an interacting Bose gas. Sov. Phys. JETP 75, 387–393 (1992).

    Google Scholar 

  32. Semikoz, D. V. & Tkachev, I. I. Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995).

    ADS  Google Scholar 

  33. Kagan, Y., Shlyapnikov, G. V. & Walraven, J. T. M. Bose–Einstein condensation in trapped atomic gases. Phys. Rev. Lett. 76, 2670–2673 (1996).

    ADS  Google Scholar 

  34. Damle, K., Majumdar, S. N. & Sachdev, S. Phase ordering kinetics of the Bose gas. Phys. Rev. A 54, 5037–5041 (1996).

    ADS  Google Scholar 

  35. Gardiner, C. W., Zoller, P., Ballagh, R. J. & Davis, M. J. Kinetics of Bose–Einstein condensation in a trap. Phys. Rev. Lett. 79, 1793–1796 (1997).

    ADS  Google Scholar 

  36. Berloff, N. G. & Svistunov, B. V. Scenario of strongly nonequilibrated Bose–Einstein condensation. Phys. Rev. A 66, 013603 (2002).

    ADS  Google Scholar 

  37. Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose–Einstein condensate. Science 279, 1005–1007 (1998).

    ADS  Google Scholar 

  38. Köhl, M., Davis, M. J., Gardiner, C. W., Hänsch, T. W. & Esslinger, T. Growth of Bose–Einstein condensates from thermal vapor. Phys. Rev. Lett. 88, 080402 (2002).

    ADS  Google Scholar 

  39. Davis, M. J., Wright, T. M., Gasenzer, T., Gardiner, S. A. & Proukakis, N. P. in Universal Themes of Bose–Einstein Condensation (eds Proukakis, N. et al.) (Cambridge Univ. Press, 2017).

  40. Beugnon, J. & Navon, N. Exploring the Kibble–Zurek mechanism with homogeneous Bose gases. J. Phys. B 50, 022002 (2017).

    ADS  Google Scholar 

  41. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    ADS  Google Scholar 

  42. Eigen, C. et al. Observation of weak collapse in a Bose–Einstein condensate. Phys. Rev. X 6, 041058 (2016).

    Google Scholar 

  43. Dyachenko, S., Newell, A. C., Pushkarev, A. & Zakharov, V. E. Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Physica D 57, 96–160 (1992).

    ADS  MathSciNet  MATH  Google Scholar 

  44. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    ADS  Google Scholar 

  45. Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Science 366, 382–385 (2019).

    Google Scholar 

  46. Gotlibovych, I. et al. Observing properties of an interacting homogeneous Bose–Einstein condensate: Heisenberg-limited momentum spread, interaction energy, and free-expansion dynamics. Phys. Rev. A 89, 061604 (2014).

    ADS  Google Scholar 

  47. Weiler, C. N. et al. Spontaneous vortices in the formation of Bose–Einstein condensates. Nature 455, 948–951 (2008).

    ADS  Google Scholar 

  48. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167–170 (2015).

    ADS  Google Scholar 

  49. Schmidutz, T. F. et al. Quantum Joule–Thomson effect in a saturated homogeneous Bose gas. Phys. Rev. Lett. 112, 040403 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Berges, T. Gasenzer, J. Schmiedmayer, M. K. Oberthaler, E. A. Cornell, V. Kasper and N. Navon for discussions. This work was supported by EPSRC (grants EP/N011759/1 and EP/P009565/1), ERC (QBox) and a QuantERA grant (NAQUAS, EPSRC grant EP/R043396/1). C.E. acknowledges support from Jesus College (Cambridge). T.A.H. acknowledges support from the EU Marie Skłodowska-Curie programme (grant MSCA-IF-2018 840081). R.P.S. acknowledges support from the Royal Society. Z.H. acknowledges support from the Royal Society Wolfson Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.A.P.G. led the project. L.H.D. and C.E. contributed significantly to data collection, analysis, and production of figures. All authors contributed extensively to interpretation of the data and production of the manuscript.

Corresponding authors

Correspondence to Jake A. P. Glidden or Zoran Hadzibabic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional details of scaling procedure, for the a = 300 a0 data shown in Fig. 2 in the main text.

a-c, Infrared scaling dynamics on log-log axes. Panels a and b correspond to the top and bottom panel, respectively, in Fig. 2c in the main text. In c we illustrate partial collapse, with α = 1.15 and β = 0, to show more clearly how much the distribution moves along the k axis. d, Overview of scaling exponent probability densities for both infrared (IR) and ultraviolet (UV).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glidden, J.A.P., Eigen, C., Dogra, L.H. et al. Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys. 17, 457–461 (2021). https://doi.org/10.1038/s41567-020-01114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01114-x

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing