Vibrational coherent control of localized dd electronic excitation

Abstract

Addressing the role of quantum coherence in the interplay between the different matter constituents (electrons, phonons and spin) is a critical step towards understanding transition metal oxides and designing complex materials with new functionalities. Here we use coherent vibrational control of on-site dd electronic transitions in a model edge-sharing insulating transition metal oxide (CuGeO3) to single out the effects of vibrational coherence in electron–phonon coupling. By comparing time-domain experiments based on high- and low-photon-energy ultrashort laser excitation pulses with a fully quantum description of phonon-assisted absorption, we could distinguish the processes associated with incoherent thermal lattice fluctuations from those driven by the coherent motion of the atoms. In particular, while thermal fluctuations of the phonon bath uniformly increase the electronic absorption, the resonant excitation of phonon modes also results in light-induced transparency that is coherently controlled by the vibrational motion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Coherent vibrational control of on-site dd crystal field transitions between different Cu orbital states.
Fig. 2: Experimental evidence of coherent and incoherent phonon dressings of dd crystal field transitions.
Fig. 3: Phonon-mediated crystal field absorption.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    ADS  Article  Google Scholar 

  2. 2.

    Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    ADS  Article  Google Scholar 

  3. 3.

    Conte, S. D. et al. Disentangling the electronic and phononic glue in a high-Tc superconductor. Science 335, 1600–1603 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Allen, P. B. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460–1463 (1987).

    ADS  Article  Google Scholar 

  5. 5.

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  6. 6.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Cartella, A., Nova, T. F., Fechner, M., Merlin, R. & Cavalleri, A. Parametric amplification of optical phonons. Proc. Natl Acad. Sci. USA 115, 12148–12151 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Giannetti, C. et al. Disentangling thermal and nonthermal excited states in a charge-transfer insulator by time- and frequency-resolved pump-probe spectroscopy. Phys. Rev. B 80, 235129 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Yuasa, Y., Nakajima, M., Yamanouchi, T., Ueda, Y. & Suemoto, T. Ultrafast time-resolved spectroscopy of the spin-Peierls compound CuGeO3. J. Lumin. 128, 1087–1089 (2008).

    Article  Google Scholar 

  12. 12.

    Damascelli, A., Marel, D. V. D., Dhalenne, G. & Revcolevschi, A. Optical spectroscopy of pure and doped CuGeO3. Phys. Rev. B 61, 12063–12074 (2000).

    ADS  Article  Google Scholar 

  13. 13.

    Bassi, M. et al. Optical absorption of CuGeO3. Phys. Rev. B 54, R11030–R11033 (1996).

    ADS  Article  Google Scholar 

  14. 14.

    O’Neal, K. R. et al. Vibronic coupling and band gap trends in CuGeO3 nanorods. Phys. Rev. B 96, 075437 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Monney, C. et al. Determining the short-range spin correlations in the spin-chain Li2CuO2 and CuGeO3 compounds using resonant inelastic X-ray scattering. Phys. Rev. Lett. 110, 087403 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Mahan, G. D. Many-Particle Physics (Springer, 2000).

  17. 17.

    Ballhausen, C. J. Ligand Field Theory (McGraw-Hill, 1962).

  18. 18.

    Popovic, Z. V. Phonons in CuGeO3 studied using polarized far-infrared and Raman-scattering spectroscopies. Phys. Rev. B 52, 4185–4190 (1995).

    ADS  Article  Google Scholar 

  19. 19.

    Huang, H.-Y. et al. Ab initio calculation of d-d excitations in quasi-one-dimensional Cu d9 correlated materials. Phys. Rev. B 84, 235125 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    van den Brink, J. Orbital excitations in LaMnO3. Phys. Rev. Lett. 87, 217202 (2001).

    ADS  Article  Google Scholar 

  21. 21.

    Yamaguchi, K., Kurihara, T., Minami, Y., Nakajima, M. & Suemoto, T. Terahertz time-domain observation of spin reorientation in orthoferrite ErFeO3 through magnetic free induction decay. Phys. Rev. Lett. 110, 137204 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the Morin transition in DyFeO3. Phys. Rev. Lett. 116, 097401 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Bossini, D. et al. Femtosecond activation of magnetoelectricity. Nat. Phys. 14, 370–374 (2018).

    Article  Google Scholar 

  24. 24.

    Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Randi, F. Low-Energy Physics in Strongly Correlated Materials via Nonlinear Spectroscopies. PhD thesis, Univ. Trieste (2017).

  26. 26.

    Giusti, F. Intensity and Fluctuation Dynamics in Pump-Probe Experiments in Complex Materials. PhD thesis, Univ. Trieste (2018).

  27. 27.

    Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    ADS  Article  Google Scholar 

  28. 28.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  29. 29.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  30. 30.

    Setten, M. V. et al. The PSEUDODOJO: training and grading a 85 element optimized norm-conserving pseudopotential table. Comp. Phys. Commun. 226, 39–54 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Wu, H., Qian, M. C. & Zheng, Q. Q. Insulating band structure of CuGeO3. J. Phys. Condens. Matter 11, 209–219 (1999).

    ADS  Article  Google Scholar 

  32. 32.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    ADS  Article  Google Scholar 

  33. 33.

    Marques, M. A., Castro, A., Bertsch, G. F. & Rubio, A. octopus: a first-principles tool for excited electron-ion dynamics. Comp. Phys. Commun. 151, 60–78 (2003).

    ADS  Article  Google Scholar 

  34. 34.

    Castro, A. et al. octopus: a tool for the application of time-dependent density functional theory. Phys. Status Solidi B 243, 2465–2488 (2006).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Revcolevschi for providing the CuGeO3 samples and the critical reading of the manuscript and A. Cavalleri for his feedback on the manuscript and project. This work was mainly supported by the ERC grant INCEPT no. 677488. F. Glerean was supported by the Italian Ministry of Education, University and Research, MIUR (SIR project grant no. RBSI14ZIY2). This work was partially supported by the European Research Council (ERC-2015-AdG694097), the Cluster of Excellence AIM and SFB925. J.v.d.B. aknowledges support from the Deutsche Forschungsgemeinschaft (DFG) through the Würzburg-Dresden Cluster of Excellence ct.qmat (EXC 2147, project ID 390858490) and CRC 1143 (project no. A05, project ID 247310070). F.B. acknowledges that his research has been conducted within the framework of the Trieste Institute for Theoretical Quantum Technologies.

Author information

Affiliations

Authors

Contributions

A.M. and F. Giusti performed the experiments with support from F. Glerean, G.S. and F.V. A.M. analysed the data. S.M., F.B. and F.V. developed the theoretical model. S.M. performed the analytical calculations with support from F.V. and F.B. S.M., S.L. and A.R. conceived and performed the DFT calculations. T.N. and A.C. performed the finite-difference time-domain calculations. J.v.d.B., D.F. and F.B. conceived the effective Hamiltonian model. A.M., S.M., F.B. and D.F. led the data interpretation and the drafting of the manuscript with contributions from all other authors. D.F. conceived and managed the project.

Corresponding author

Correspondence to Daniele Fausti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Venkatraman Gopalan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, experimental details, complementary results, discussion, details about the theory and calculations, and Tables 1 and 2.

Source data

Source Data Fig. 1

Source data for Fig. 1c.

Source Data Fig. 2

Source data for Fig. 2

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marciniak, A., Marcantoni, S., Giusti, F. et al. Vibrational coherent control of localized dd electronic excitation. Nat. Phys. (2021). https://doi.org/10.1038/s41567-020-01098-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing