Abstract
Topology and symmetry have emerged as compelling guiding principles to predict and harness the propagation of waves in natural and artificial materials. Be it for quantum particles (such as electrons) or classical waves (such as light, sound or mechanical motion), these concepts have so far been mostly developed in idealized scenarios, in which the wave amplitude is neither attenuated nor amplified, and time evolution is unitary. In recent years, however, there has been a considerable push to explore the consequences of topology and symmetries in non-conservative, non-equilibrium or non-Hermitian systems. A plethora of driven artificial materials has been reported, blurring the lines between a wide variety of fields in physics and engineering, including condensed matter, photonics, phononics, optomechanics, as well as electromagnetic and mechanical metamaterials. Here we discuss the latest advances, emerging opportunities and open challenges for combining these exciting research endeavours into the new pluridisciplinary field of non-Hermitian topological systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Giant spin ensembles in waveguide magnonics
Nature Communications Open Access 08 December 2022
-
Modulation instability—rogue wave correspondence hidden in integrable systems
Communications Physics Open Access 22 November 2022
-
A non-Hermitian optical atomic mirror
Nature Communications Open Access 06 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Raman, A. & Fan, S. Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem. Phys. Rev. Lett. 104, 087401 (2010).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical †frequencies. Nat. Mater. 12, 108–113 (2013).
Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).
Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).
Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).
Bandres, M. A., Rechtsman, M. C. & Segev, M. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016).
Fremling, M., van Hooft, M., Smith, C. M. & Fritz, L. Existence of robust edge currents in Sierpiński fractals. Phys. Rev. Res. 2, 013044 (2020).
Souslov, A., van Zuiden, B. C., Bartolo, D. & Vitelli, V. Topological sound in active-liquid metamaterials. Nat. Phys. 13, 1091–1094 (2017).
Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. M. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).
Delplace, P., Marston, J. B. & Venaille, A. Topological origin of equatorial waves. Science 358, 1075–1077 (2017).
Zangeneh-Nejad, F. & Fleury, R. Topological fano resonances. Phys. Rev. Lett. 122, 014301 (2019).
Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Yin, X., Jin, J., Soljačić, M., Peng, C. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).
Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).
Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).
Fleury, R., Khanikaev, A. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).
Salerno, G., Ozawa, T., Price, H. M. & Carusotto, I. Floquet topological system based on frequency-modulated classical coupled harmonic oscillators. Phys. Rev. B 93, 085105 (2016).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).
Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).
Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).
St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).
Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Miri, M. A. & Alu, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
Rivet, E. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).
Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019).
Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Bacot, V., Durey, G., Eddi, A., Fink, M. & Fort, E. Phase-conjugate mirror for water waves driven by the faraday instability. Proc. Natl Acad. Sci. USA 116, 8809–8814 (2019).
Svidzinsky, A. A., Yuan, L. & Scully, M. O. Quantum amplification by superradiant emission of radiation. Phys. Rev. X 3, 041001 (2013).
Koutserimpas, T. T. & Fleury, R. Nonreciprocal gain in non-Hermitian time-floquet systems. Phys. Rev. Lett. 120, 087401 (2018).
Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alu, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).
Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).
Ruesink, F., Miri, M. A., Alu, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).
Kane, C. L. & Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Ma, J., Zhou, D., Sun, K., Mao, X. & Gonella, S. Edge modes and asymmetric wave transport in topological lattices: experimental characterization at finite frequencies. Phys. Rev. Lett. 121, 094301 (2018).
Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).
Miniaci, M., Pal, R. K., Morvan, B. & Ruzzene, M. Experimental observation of topologically protected helical edge modes in patterned elastic plates. Phys. Rev. X 8, 031074 (2018).
Martinez Alvarez, V. M., Barrios Vargas, J. E. & Foa Torres, L. E. F. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 97, 121401(R) (2018).
Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).
Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).
Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Preprint at https://arxiv.org/abs/1912.10048 (2019).
Ghatak, A., Brandenbourger, M., Wezel, J. v. & Coulais, C. Observation of non-hermitian topology and its bulk–edge correspondence. https://arxiv.org/abs/1907.11619 (2019).
Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk–boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).
Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103(R) (2019).
McDonald, A., Pereg-Barnea, T. & Clerk, A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev–Majorana chain. Phys. Rev. X 8, 041031 (2018).
Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).
Scheibner, C., Irvine, I. W. T. M. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).
Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).
Shen, H., Zhen, B. & Fu, L. Topological band theory for non-hermitian hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).
Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).
Reimer, V., Pedersen, K. G. L., Tanger, N., Pletyukhov, M. & Gritsev, V. Nonadiabatic effects in periodically driven dissipative open quantum systems. Phys. Rev. A 97, 043851 (2018).
Nassar, H., Chen, H., Norris, A. N. & Huang, G. L. Quantization of band tilting in modulated phononic crystals. Phys. Rev. B 97, 014305 (2018).
Yang, Z. et al. Mode-locked topological insulator laser utilizing synthetic dimensions. Phys. Rev. X 10, 011059 (2020).
Milton, G. W. & Mattei, O. Field patterns: a new mathematical object. Proc. Math. Phys. Eng. Sci. 473, 20160819 (2017).
Li, M., Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Topological phases and nonreciprocal edge states in non-hermitian floquet insulators. Phys. Rev. B 100, 045423 (2019).
Li, L., Lee, C. H. & Gong, J. Topological switch for non-Hermitian skin effect in cold-atom systems with loss. Phys. Rev. Lett. 124, 250402 (2020).
Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).
Po, H., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).
Kruthoff, J., de Boer, J. & van Wezel, J. Topology in time-reversal symmetric crystals. Phys. Rev. B 100, 075116 (2019).
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).
Cha, J., Kim, K. W. & Daraio, C. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 564, 229–233 (2018).
Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).
Acknowledgements
We thank the Dutch Institute for Emergent Phenomena for sponsoring the workshop ‘Topology and broken symmetries: from driven quantum matter to active metamaterials’, which took place in Utrecht, the Netherlands from 1 to 3 July 2019, and the workshop participants for insightful discussions that inspired this Perspective. We acknowledge funding by ERC-StG-Coulais-852587-Extr3Me (C.C.) and by the Swiss National Science Foundation under SNSF grant number 172487 and the SNSF Eccellenza award number 181232 (R.F.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Coulais, C., Fleury, R. & van Wezel, J. Topology and broken Hermiticity. Nat. Phys. 17, 9–13 (2021). https://doi.org/10.1038/s41567-020-01093-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-01093-z
This article is cited by
-
Non-Hermitian chiral phononics through optomechanically induced squeezing
Nature (2022)
-
Giant spin ensembles in waveguide magnonics
Nature Communications (2022)
-
Modulation instability—rogue wave correspondence hidden in integrable systems
Communications Physics (2022)
-
A non-Hermitian optical atomic mirror
Nature Communications (2022)
-
Novel study to correlate efficient photocatalytic activity of WO3 and Cr doped TiO2 leading to enhance the shelf-life of the apple
Applied Nanoscience (2022)