Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zero-refractive-index materials and topological photonics


The refractive index is one of the most basic optical properties of a material and its interaction with light. Modern materials engineering—particularly the concept of metamaterials—has made it necessary to consider its subtleties, including anisotropy and complex values. Here we re-examine the refractive index and find a general way to calculate the direction-dependent refractive index and the condition for zero index in a given direction. By analogy with linear versus circular polarization, we show that when the zero-index direction is complex-valued, a material supports waves that can propagate in only one sense, for example, clockwise. We show that there is an infinite family of both time-reversible and time-irreversible homogeneous electromagnetic media that support unidirectional propagation for a particular polarization. As well as extending the concept of the refractive index, shedding new light on our understanding of topological photonics and providing new sets of material parameters, our simple picture also reproduces many of the findings derived using topology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dispersion relation and polarization for electromagnetic waves in materials as the index is reduced to zero.
Fig. 2: Emission from a circulating current inside a CAN medium.
Fig. 3: Scattering from a bianisotropic CAN medium.
Fig. 4: Bound states in a CAN medium with a pseudo magnetic field.
Fig. 5: Unidirectional edge modes between a pair of time-reversed CAN media, and similar unidirectional propagation evident in total internal reflection.
Fig. 6: The out-of-plane field Ez of a surface plasmon excited by a chiral antenna.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The figures were generated using Mathematica and Python, and full wave simulations were performed using COMSOL Multiphysics 5.4. Mathematica and Python code and COMSOL models are available from the corresponding author upon reasonable request.


  1. 1.

    Mark Smith, A. From Sight to Light: The Passage from Ancient to Modern Optics (Univ. Chicago Press, 2015).

  2. 2.

    Young, T. A Course of Lectures on Natural Philosophy and the Mechanical Arts Vol. 1 (Franklin Classics Trade Press, 2018).

  3. 3.

    Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article  Google Scholar 

  4. 4.

    Guo, A. et al. Observation of \({\mathcal{PT}}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Horsley, S. A. R., Artoni, M. & La Rocca, G. C. Spatial Kramers–Kronig relations and the reflection of waves. Nat. Photon. 9, 436–439 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    ADS  Article  Google Scholar 

  7. 7.

    Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends. Phys. Rev. Lett. 97, 157403 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Leonhardt, U. & Philbin, T. G. Geometry and Light: The Science of Invisibility (Dover, 2010).

  9. 9.

    Edwards, B., Alù, A., Young, M. E., Silveirinha, M. G. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    ADS  Article  Google Scholar 

  10. 10.

    Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Davoyan, A. R. & Engheta, N. Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity. Phys. Rev. Lett. 111, 257401 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Silveirinha, M. G. Chern invariants for continuous media. Phys. Rev. B 92, 125153 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Horsley, S. A. R. Unidirectional wave propagation in media with complex principal axes. Phys. Rev. A 97, 023834 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Horsley, S. A. R. Topology and the optical Dirac equation. Phys. Rev. A 98, 043837 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Thaller, B. The Dirac Equation (Springer, 2013).

  16. 16.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    Barnett, S. M. Optical Dirac equation. New J. Phys. 16, 093008 (2014).

    MathSciNet  Article  Google Scholar 

  18. 18.

    Horsley, S. A. R. Indifferent electromagnetic modes: bound states and topology. Phys. Rev. A 100, 053819 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Mechelen, T. V. & Jacob, Z. Photonic Dirac monopoles and skyrmions: spin-1 quantization. Opt. Mater. Express 9, 95–111 (2019).

    ADS  Article  Google Scholar 

  20. 20.

    Barnes, W. L., Horsley, S. A. R. & Vos, W. L. Classical antennas, quantum emitters and densities of optical states. J. Opt. 22, 073501 (2020).

    ADS  Google Scholar 

  21. 21.

    Silveirinha, M. G. \({\mathcal{P}}\cdot {\mathcal{T}}\cdot {\mathcal{D}}\) symmetry protected scattering anomaly in optics. Phys. Rev. B 95, 035153 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Liu., F. & Li, J. Gauge field optics with anisotropic media. Phys. Rev. Lett. 114, 103902 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Olver, F. W. J. et al. NIST Digital Library of Mathematical Functions Release 1.0.23 (NIST, 2019);

  25. 25.

    Aharonov, Y. & Casher, A. Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field. Phys. Rev. A 19, 2461–2462 (1978).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Atiyah, M. F. & Singer, I. M. The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc. 69, 422–433 (1969).

    MathSciNet  Article  Google Scholar 

  27. 27.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Gao, W. et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett. 114, 037402 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    COMSOL Multiphysics v. 4.4 (COMSOL, 2018);

Download references


S.A.R.H. acknowledges financial support from a Royal Society TATA University Research Fellowship (RPG-2016-186). M.W. acknowledges funding from an EPSRC vacation bursary. S.A.R.H. acknowledges useful conversations with W. L. Barnes and I. R. Hooper, as well as I. R. Hooper’s numerical expertise.

Author information




S.A.R.H. devised the theory and wrote the manuscript. M.W. contributed to the theory, commented on the manuscript and wrote the numerical code to produce Fig. 1.

Corresponding author

Correspondence to S. A. R. Horsley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary calculations and figures.

Source data

Source Data Fig. 2

Numerical data for Cartesian plots.

Source Data Fig. 3

Numerical data for Cartesian plots.

Source Data Fig. 4

Numerical data for Cartesian plots.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horsley, S.A.R., Woolley, M. Zero-refractive-index materials and topological photonics. Nat. Phys. 17, 348–355 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing