Experimental observation of vortex rings in a bulk magnet


Vortex rings are remarkably stable structures that occur in a large variety of systems, such as in turbulent gases (where they are at the origin of weather phenomena)1, fluids (with implications for biology)2, electromagnetic discharges3 and plasmas4. Although vortex rings have also been predicted to exist in ferromagnets5, they have not yet been observed. Using X-ray magnetic nanotomography6, we imaged three-dimensional structures forming closed vortex loops in a bulk micromagnet. The cross-section of these loops consists of a vortex–antivortex pair and, on the basis of magnetic vorticity (a quantity analogous to hydrodynamic vorticity), we identify these configurations as magnetic vortex rings. Although such structures have been predicted to exist as transient states in exchange ferromagnets5, the vortex rings we observe exist as static configurations, and we attribute their stability to the dipolar interaction. In addition, we observe stable vortex loops intersected by point singularities7 at which the magnetization within the vortex and antivortex cores reverses. We gain insight into the stability of these states through field and thermal equilibration protocols. The observation of stable magnetic vortex rings opens up possibilities for further studies of complex three-dimensional solitons in bulk magnets, enabling the development of applications based on three-dimensional magnetic structures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Measuring and reconstructing the magnetic structure and magnetic vorticity within a GdCo2 pillar.
Fig. 2: Structure of a vortex ring with circulating magnetic vorticity.
Fig. 3: Structure of a vortex loop containing magnetization singularities.
Fig. 4: Magnetic vorticity plots measured for a similar micropillar at remanence showing the effect of different field histories.

Data availability

Experimental data and analysis codes used for this manuscript can be found at https://doi.org/10.5281/zenodo.4041745.


  1. 1.

    Yao, J. & Lundgren, T. Experimental investigation of microbursts. Exp. Fluids 21, 17–25 (1996).

    Article  Google Scholar 

  2. 2.

    Kilner, P. J. et al. Asymmetric redirection of flow through the heart. Nature 404, 759–761 (2000).

    Article  Google Scholar 

  3. 3.

    Stenhoff, M. Ball Lightning: An Unsolved Problem in Atmospheric Physics 1st edn (Springer, 1999).

  4. 4.

    Akhmetov, D. G. Vortex Rings 1st edn (Springer, 2009).

  5. 5.

    Cooper, N. R. Propagating magnetic vortex rings in ferromagnets. Phys. Rev. Lett. 82, 1554–1557 (1999).

    ADS  Article  Google Scholar 

  6. 6.

    Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Feldtkeller, E. Mikromagnetisch Stetige und unstetige Magnetisierungskonfigurationen. Zeitschrift. Angew. Phys. 19, 530–536 (1965).

    Google Scholar 

  8. 8.

    Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    ADS  Article  Google Scholar 

  9. 9.

    Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

    ADS  Article  Google Scholar 

  10. 10.

    Guslienko, K. Magnetic vortex state stability reversal and dynamics in restricted geometries. J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).

    Article  Google Scholar 

  11. 11.

    Choe, S.-B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Hertel, R., Gliga, S., Fähnle, M. & Schneider, C. M. Ultrafast nanomagnetic toggle switching of vortex cores. Phys. Rev. Lett. 98, 117201 (2007).

    ADS  Article  Google Scholar 

  14. 14.

    Pigeau, B. et al. A frequency-controlled magnetic vortex memory. Appl. Phys. Lett. 96, 132506 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Hertel, R. & Schneider, C. M. Exchange explosions: magnetization dynamics during vortex–antivortex annihilation. Phys. Rev. Lett. 97, 177202 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Gliga, S., Yan, M., Hertel, R. & Schneider, C. M. Ultrafast dynamics of a magnetic antivortex: micromagnetic simulations. Phys. Rev. B 77, 060404 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    Gliga, S., Hertel, R. & Schneider, C. M. Switching a magnetic antivortex core with ultrashort field pulses. J. Appl. Phys. 103, 07B115 (2008).

    Article  Google Scholar 

  18. 18.

    Neudert, A. et al. Bloch-line generation in cross-tie walls by fast magnetic-field pulses. J. Appl. Phys. 99, 08F302 (2006).

    Article  Google Scholar 

  19. 19.

    Papanicolaou, N. in Singularities in Fluids, Plasmas and Optics Vol. 404 (ASI Series C404, NATO, 1993).

  20. 20.

    Belavin, A. A. & Polyakov, A. M. Metastable states of two-dimensional isotropic ferromagnet. ZETP Lett. 22, 245–247 (1975).

    ADS  Google Scholar 

  21. 21.

    Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    Ackerman, P. J. & Smalyukh, I. I. Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017).

    Google Scholar 

  23. 23.

    Donnelly, C. et al. High-resolution hard X-ray magnetic imaging with dichroic ptychography. Phys. Rev. B 94, 064421 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Donnelly, C. et al. Tomographic reconstruction of a three-dimensional magnetization vector field. New J. Phys. 20, 083009 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Chikazumi, S. in International Series of Monographs on Physics 2nd edn, Vol. 94 (Oxford Univ. Press, 2010).

  26. 26.

    Arrott, A., Heinrich, B. & Aharoni, A. Point singularities and magnetization reversal in ideally soft ferromagnetic cylinders. IEEE Trans. Magn. 15, 1228–1235 (1979).

    ADS  Article  Google Scholar 

  27. 27.

    Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Lee, T. & Pang, Y. Nontopological solitons. Phys. Rep. 221, 251–350 (1992).

    MathSciNet  Article  Google Scholar 

  29. 29.

    Malozemoff, A. & Slonczewski, J. in Magnetic Domain Walls in Bubble Materials (eds Malozemoff, A. & Slonczewski, J.) Ch. IV, 77–121 (Academic Press, 1979).

  30. 30.

    Miltat, J. & Thiaville, A. Vortex cores—smaller than small. Science 298, 555–555 (2002).

    Article  Google Scholar 

  31. 31.

    Kerr, R. M. & Brandenburg, A. Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection. Phys. Rev. Lett. 83, 1155–1158 (1999).

    ADS  Article  Google Scholar 

  32. 32.

    Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nat. Mater. 9, 139–145 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Kim, D.-H. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Liu, Y., Lake, R. K. & Zang, J. Binding a hopfion in a chiral magnet nanodisk. Phys. Rev. B 98, 174437 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Sutcliffe, P. Hopfions in chiral magnets. J. Phys. A 51, 375401 (2018).

    MATH  Article  Google Scholar 

  36. 36.

    Tai, J.-S. B. & Smalyukh, I. I. Static Hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures. Phys. Rev. Lett. 121, 187201 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Chen, B. G.-G, Ackerman, P. J., Alexander, G. P., Kamien, R. D. & Smalyukh, I. I. Generating the Hopf fibration experimentally in nematic liquid crystals. Phys. Rev. Lett. 110, 237801 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Donnelly, C. et al. Time-resolved imaging of three-dimensional nanoscale magnetisation dynamics. Nat. Nanotechnol. 15, 356–360 (2020).

    ADS  Article  Google Scholar 

  39. 39.

    Pokrovskii, V. L. & Uimin, G. V. Dynamics of vortex pairs in a two-dimensional magnetic material. JETP Lett. 41, 128 (1985).

    ADS  Google Scholar 

  40. 40.

    Papanicolaou, N. & Spathis, P. N. Semitopological solitons in planar ferromagnets. Nonlinearity 12, 285–302 (1999).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Cooper, N. R. Solitary waves of planar ferromagnets and the breakdown of the spin-polarized quantum Hall effect. Phys. Rev. Lett. 80, 4554–4557 (1998).

    ADS  Article  Google Scholar 

  42. 42.

    Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).

    Article  Google Scholar 

  43. 43.

    Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Holler, M. et al. OMNY PIN—a versatile sample holder for tomographic measurements at room and cryogenic temperatures. Rev. Sci. Instrum. 88, 113701 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Pfeiffer, F. X-ray ptychography. Nat. Photon. 12, 9–17 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    ADS  Article  Google Scholar 

  48. 48.

    Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Crystallogr. 53, 574–586 (2020).

    Article  Google Scholar 

  49. 49.

    Scagnoli, V. et al. Linear polarization scans for resonant X-ray diffraction with a double-phase-plate configuration. J. Synch. Radiat. 16, 778–787 (2009).

    Article  Google Scholar 

  50. 50.

    Donnelly, C. Hard X-ray Tomography of Three Dimensional Magnetic Structures. PhD thesis, ETH Zurich (2017).

  51. 51.

    van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

    Article  Google Scholar 

  52. 52.

    Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization. Visualisation Handbook (Elsevier, 2005).

  53. 53.

    Wilczek, F. & Zee, A. Linking numbers, spin and statistics of solitons. Phys. Rev. Lett. 51, 2250–2252 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    Gross, D. J. Meron configurations in the two-dimensional O(3) σ-model. Nucl. Phys. B 132, 439–456 (1978).

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    Usov, N. A. & Peschany, S. E. Magnetization curling in a fine cylindrical particle. J. Magn. Magn. Mater. 118, L290–L294 (1993).

    ADS  Article  Google Scholar 

  56. 56.

    Huber, E. E., Smith, D. O. & Goodenough, J. B. Domain-wall structure in permalloy films. J. Appl. Phys. 29, 294–295 (1958).

    ADS  Article  Google Scholar 

  57. 57.

    Metlov, K. L. Simple analytical description of the cross-tie domain wall structure. Appl. Phys. Lett. 79, 2609–2611 (2001).

    ADS  Article  Google Scholar 

Download references


X-ray magnetic tomography measurements were performed at the cSAXS beamline at the Swiss Light Source, Paul Scherrer Institute (PSI), Switzerland, and X-ray microcrystallography measurements at the X06DA beamline at the Swiss Light Source, PSI, Switzerland. We thank A. Bogatyrëv for his careful reading of the manuscript and valuable remarks, R. Cowburn for discussions and V. Olieric for microcrystallography measurements. We thank R. M. Galera for providing and performing magnetic characterizations of the GdCo2 nugget, S. Stutz for the sample fabrication and E. Müller from the Electron Microscopy Facility at PSI for the focused ion beam preparation of the pillar samples. C.D. is supported by the Leverhulme Trust (ECF-2018-016), the Isaac Newton Trust (18-08) and the L’Oréal-UNESCO UK and Ireland Fellowship for Women in Science. S.G. was funded by the Swiss National Science Foundation, Spark project no. 190736. K.L.M. acknowledges the support of the Russian Science Foundation under project no. RSF 16-11-10349. N.R.C. was supported by EPSRC grant EP/P034616/1 and by a Simons Investigator Award.

Author information




The study of topological magnetic features in three dimensions was conceived by S.G., C.D. and K.L.M., and originated from a larger project on 3D magnetic systems conceived by L.J.H. and J.R. C.D., M.G.-S., S.G., V.S., M.H. and J.R. performed the experiments. Magnetometry measurements of the material were performed by N.S.B. and V.S. C.D. performed the magnetic reconstruction with support from M.G.-S. and V.S. C.D. analysed the data and N.R.C. conceived the calculation of the magnetic vorticity. C.D., K.L.M., N.R.C. and S.G. interpreted the magnetic configuration. K.L.M. developed the analytical model. C.D., K.L.M., N.R.C. and S.G. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Claire Donnelly or Konstantin L. Metlov or Sebastian Gliga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Paul Sutcliffe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Detailed overview of the vortex ring with circulating magnetic vorticity (presented in Fig. 2), shown in successive slices through the loop.

The magnetization within each slice is represented by the streamlines. The colourscale in the top row indicates the \(\hat{x}\) component of the magnetization, while the colour scale in the bottom row indicates the \(\hat{x}\) component of the vorticity. The vorticity associated with the vortex structure extending throughout the pillar changes sign in slice d due to the presence of a Bloch point, while the vortex–antivortex pair conserves its vorticity throughout. In slices b and c, the magnetization forms a structure similar to that of a cross-tie wall, which dissolves as the pair unwinds, at slices a and d, resulting in a single vortex.

Extended Data Fig. 2 Analytical models of vortex loops with different magnetization structures.

Top, middle and bottom rows: Magnetization, pre-images and vorticity distribution for the different 2+1 dimensional analytical models. The magnetization plots (top row) only include the projection of the magnetization onto the shown plane, while the rings correspond to the positions of the vortex and antivortex centres. The colour indicates the mz component of the magnetization. The pre-images are shown as volumes where the magnetization vectors deviate only slightly from certain directions di, indicated by the colour-coded arrows on each corresponding sphere. The opacity and colour on the vorticity plots indicate the magnitude of local vorticity vectors. The structure in c is comparable to the vortex rings in Fig. 2, while the structure in d is comparable to that in Fig. 3.

Extended Data Fig. 3 Detailed overview of the magnetic state of the vortex loop containing Bloch points (presented in Fig. 3), shown in successive slices through the loop.

The magnetization within each slice is represented by the streamlines. The colour scale in the top row indicates the \(\hat{x}\) component of the magnetization, while the colourscale in the bottom row indicates the \(\hat{x}\) component of the vorticity. The vorticity along the vortex core reverses between slices b and c, while the vorticity along the antivortex core reverses between slices c and d. f, The white isosurface, plotted along with the vortex loop, corresponds to mx=0 and separates regions of mx=+1 and mx=−1, thus highlighting the presence of a complicated domain wall structure. The Bloch points are located at the intersection of the loop with this isosurface (locations indicated by the dashed circles).

Extended Data Fig. 4 The vortex loop containing magnetization singularities (presented in Fig. 3) seen from multiple directions.

The vortex loop containing Bloch points is plotted using the isosurfaces mx= ± 1 (a,c) and pre-images (b,d). In a and b, the vortex loop and its pre-images have the same spatial orientation as in Fig. 3a. In c and d, the loop and pre-images are presented with the same orientation as in Fig. 3g.

Extended Data Fig. 5 Effect of different field and thermal protocols on the presence and distribution of regions of high magnetic vorticity, and magnetization singularities.

a,c, Vorticity distribution following the application of a 7 T saturating field (a) and following saturation and field cooling (c). b, Regions of high divergence of the magnetic vorticity indicate the presence of Bloch points (red) and anti-Bloch points (blue) at remanence, following saturation. d, In the same way, singularities are identified after heating at 400 K and field cooling in a 7 T field. Noticeably fewer magnetic structures with high vorticity are present following the field-cooling procedure.

Extended Data Fig. 6 A diffraction pattern from the GdCo2 pillar.

The substructure of the Bragg peaks, magnified in the inset to the right, indicates the polycrystalline nature of the material.

Extended Data Fig. 7 Location of the central vortex following the two different protocols.

The position of the central vortex core is plotted using red and blue isosurfaces for the remanent magnetic structure after (red) the application of a 7 T magnetic field, and after (blue) the application of the field-cooling protocol. After both protocols, the vortex core occupies almost the same position.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donnelly, C., Metlov, K.L., Scagnoli, V. et al. Experimental observation of vortex rings in a bulk magnet. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-01057-3

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing