Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioelectrical domain walls in homogeneous tissues

Abstract

Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biochemical and bioelectrical spontaneous pattern formation.
Fig. 2: Electrophysiological bistability in an engineered cell line.
Fig. 3: Bioelectric domain walls in an engineered cell line.
Fig. 4: Bioelectric domain wall propagation in stem cell-derived myocytes.

Similar content being viewed by others

Data availability

The plots of fluorescent voltage recordings in Figs. 24 are available as Source Data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Custom-written code used for data analysis is available from the authors upon request.

References

  1. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Google Scholar 

  2. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  3. Kondo, S. & Miura, T. Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  4. Law, R. & Levin, M. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theor. Biol. Med. Model. 12, 22 (2015).

    Google Scholar 

  5. Pietak, A. & Levin, M. Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J. R. Soc. Interface 14, 20170425 (2017).

    Google Scholar 

  6. Cervera, J., Alcaraz, A. & Mafe, S. Bioelectrical signals and ion channels in the modeling of multicellular patterns and cancer biophysics. Sci. Rep. 6, 20403 (2016).

    ADS  Google Scholar 

  7. Brodsky, M. Turing-like patterns can arise from purely bioelectric mechanisms. Preprint at https://www.biorxiv.org/content/10.1101/336461v1.full (2018).

  8. Levin, M. Endogenous bioelectrical networks store non‐genetic patterning information during development and regeneration. J. Physiol. 592, 2295–2305 (2014).

    Google Scholar 

  9. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Google Scholar 

  10. Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413 (2019).

    ADS  Google Scholar 

  11. ten Tusscher, K. H. W. J., Noble, D., Noble, P. J. & Panfilov, A. V. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004).

    Google Scholar 

  12. Hibino, H. et al. Inwardly rectifying potassium channels: their structure, function and physiological roles. Physiol. Rev. 90, 291–366 (2010).

    Google Scholar 

  13. Cervera, J., Alcaraz, A. & Mafe, S. Membrane potential bistability in nonexcitable cells as described by inward and outward voltage-gated ion channels. J. Phys. Chem. B 118, 12444–12450 (2014).

    Google Scholar 

  14. Gallaher, J., Bier, M. & van Heukelom, J. S. First order phase transition and hysteresis in a cell’s maintenance of the membrane potential—an essential role for the inward potassium rectifiers. BioSystems 101, 149–155 (2010).

    Google Scholar 

  15. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737 (2004).

    ADS  Google Scholar 

  16. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    ADS  Google Scholar 

  17. McNamara, H. M., Zhang, H., Werley, C. A. & Cohen, A. E. Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016).

    Google Scholar 

  18. McNamara, H. M. et al. Geometry-dependent arrhythmias in electrically excitable tissues. Cell Syst. 7, 359–370 (2018).

    Google Scholar 

  19. Huang, Y. L., Walker, A. S. & Miller, E. W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 137, 10767–10776 (2015).

    Google Scholar 

  20. Cervera, J., Manzanares, J. A. & Mafe, S. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials. J. Phys. Chem. B 119, 2968–2978 (2015).

    Google Scholar 

  21. Benguria, R. & Depassier, M. Speed of fronts of the reaction-diffusion equation. Phys. Rev. Lett. 77, 1171 (1996).

    ADS  MATH  Google Scholar 

  22. Cohen, A. E. Nanoscale Mechanics. PhD thesis, Univ. Cambridge (2004).

  23. Moreno, A., Rook, M., Fishman, G. & Spray, D. C. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys. J. 67, 113–119 (1994).

    ADS  Google Scholar 

  24. Butterweck, A., Gergs, U., Elfgang, C., Willecke, K. & Traub, O. Immunochemical characterization of the gap junction protein connexin45 in mouse kidney and transfected human HeLa cells. J. Membr. Biol. 141, 247–256 (1994).

    Google Scholar 

  25. Langlois, S., Cowan, K. N., Shao, Q., Cowan, B. J. & Laird, D. W. Caveolin-1 and-2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol. Biol. Cell 19, 912–928 (2008).

    Google Scholar 

  26. Barkhausen, H. Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen. Phys. Z 20, 401 (1919).

    Google Scholar 

  27. Cross, M. H., Cross, P. & Brinster, R. Changes in membrane potential during mouse egg development. Dev. Biol. 33, 412–416 (1973).

    Google Scholar 

  28. Liu, J. et al. Role of an inward rectifier K current and of hyperpolarization in human myoblast fusion. J. Physiol. 510, 467–476 (1998).

    Google Scholar 

  29. Konig, S. et al. Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. J. Biol. Chem. 279, 28187–28196 (2004).

    Google Scholar 

  30. Kalderon, N., Epstein, M. L. & Gilula, N. B. Cell-to-cell communication and myogenesis. J. Cell Biol. 75, 788–806 (1977).

    Google Scholar 

  31. Metcalf, M. M., Shi, R. & Borgens, R. B. Endogenous ionic currents and voltages in amphibian embryos. J. Exp. Zool. 268, 307–322 (1994).

    Google Scholar 

  32. Borgens, R. B., Rouleau, M. F. & DeLanney, L. E. A steady efflux of ionic current predicts hind limb development in the axolotl. J. Exp. Zool. 228, 491–503 (1983).

    Google Scholar 

  33. Whited, J. L. & Levin, M. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr. Opin. Genet. Dev. 57, 61–69 (2019).

    Google Scholar 

  34. Rinne, P. L. & van der Schoot, C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125, 1477–1485 (1998).

    Google Scholar 

  35. Achenbach, F. & Weisenseel, M. Ionic currents traverse the slime mould Physarum. Cell Biol. Int. Rep. 5, 375–379 (1981).

    Google Scholar 

  36. Zhao, M. Electrical fields in wound healing—an overriding signal that directs cell migration. Semin. Cell. Dev. Biol. 20, 674–682 (2009).

    Google Scholar 

  37. Borgens, R. B. Endogenous ionic currents traverse intact and damaged bone. Science 225, 478–482 (1984).

    ADS  Google Scholar 

  38. Zhou, Y. et al. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349, 873–876 (2015).

    ADS  Google Scholar 

  39. Gurdon, J., Tiller, E., Roberts, J. & Kato, K. A community effect in muscle development. Curr. Biol. 3, 1–11 (1993).

    Google Scholar 

  40. Proulx, A., Merrifield, P. A. & Naus, C. C. Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. Dev. Genet. 20, 133–144 (1997).

    Google Scholar 

  41. Crunelli, V., Tóth, T. I., Cope, D. W., Blethyn, K. & Hughes, S. W. The ‘window’ T‐type calcium current in brain dynamics of different behavioural states. J. Physiol. 562, 121–129 (2005).

    Google Scholar 

  42. Hughes, S. W., Cope, D. W., Toth, T. I., Williams, S. R. & Crunelli, V. All thalamocortical neurones possess a T‐type Ca2+ ‘window’ current that enables the expression of bistability‐mediated activities. J. Physiol. 517, 805–815 (1999).

    Google Scholar 

  43. Crill, W. E. Persistent sodium current in mammalian central neurons. Annu. Rev. Physiol. 58, 349–362 (1996).

    Google Scholar 

  44. Li, Y. & Bennett, D. J. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J. Neurophysiol. 90, 857–869 (2003).

    Google Scholar 

  45. Schwindt, P. C. & Crill, W. E. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J. Neurophysiol. 74, 2220–2224 (1995).

    Google Scholar 

  46. Constantin, B. & Cronier, L. Involvement of gap junctional communication in myogenesis. Int. Rev. Cytol. 196, 1–65 (2000).

    Google Scholar 

  47. Levin, M. Isolation and community: a review of the role of gap-junctional communication in embryonic patterning. J. Membr. Biol. 185, 177–192 (2002).

    Google Scholar 

  48. Mobasheri, A. et al. Potassium channels in articular chondrocytes. Channels 6, 416–425 (2012).

    Google Scholar 

  49. Barrett-Jolley, R., Lewis, R., Fallman, R. & Mobasheri, A. The emerging chondrocyte channelome. Front. Physiol. 1, 135 (2010).

    Google Scholar 

  50. Tecott, L., Shtrom, S. & Julius, D. Expression of a serotonin-gated ion channel in embryonic neural and nonneural tissues. Mol. Cell. Neurosci. 6, 43–55 (1995).

    Google Scholar 

  51. Chifflet, S., Hernández, J. A. & Grasso, S. A possible role for membrane depolarization in epithelial wound healing. Am. J. Physiol. Cell Physiol. 288, C1420–C1430 (2005).

    Google Scholar 

  52. Ayata, C. & Lauritzen, M. Spreading depression, spreading depolarizations and the cerebral vasculature. Physiol. Rev. 95, 953–993 (2015).

    Google Scholar 

  53. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    ADS  Google Scholar 

  54. Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962).

    Google Scholar 

  55. Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944).

    ADS  MathSciNet  MATH  Google Scholar 

  56. Zeldovich, Y. & Frank-Kamenetskii, D. Theory of flame propagation. Zh. Fix. Khim 12, 100 (1938).

    Google Scholar 

  57. Allee, W. C., Park, O., Emerson, A. E., Park, T. & Schmidt, K. P. Principles of Animal Ecology (W. B. Saunders, 1949).

  58. Coombes, S. Waves, bumps and patterns in neural field theories. Biol. Cybern. 93, 91–108 (2005).

    MathSciNet  MATH  Google Scholar 

  59. Shiferaw, Y. & Karma, A. Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proc. Natl Acad. Sci. USA 103, 5670–5675 (2006).

    ADS  Google Scholar 

  60. Echebarria, B. & Karma, A. Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. Phys. Rev. Lett. 88, 208101 (2002).

    ADS  Google Scholar 

  61. Chal, J. et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat. Protoc. 11, 1833 (2016).

    Google Scholar 

  62. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  63. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  64. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Google Scholar 

  65. Cornwell, M. et al. VIPER: visualization pipeline for RNA-seq, a snakemake workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics 19, 135 (2018).

    Google Scholar 

  66. Werley, C. A., Chien, M. & Cohen, A. E. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation. Biomed. Opt. Express 8, 5794–5813 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank U. Böhm, A. Klaeger, J. Mathews and M. Levin for helpful discussions. We thank E. Miller for help providing the BeRST1 dye. This work was supported by the Allen Discovery Center at Tufts University, the Vannevar Bush Fellowship Foundation and the Howard Hughes Medical Institute. H.M.M. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. G.O. was supported by the Howard Hughes Medical Institute Gilliam Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.M.M. and A.E.C. conceived and designed the study. H.M.M. conducted experiments and analysed results, with assistance from R.S., H.X. and S.B. H.M.M. designed and simulated numerical models of electrically bistable cells. Z.A.T. and O.P. provided hiPSC-derived myoblasts for myocyte differentiation and characterized these cells via immunocytochemistry and RNA-seq. G.O. provided BeRST1 dye reagent. H.M.M. and A.E.C. wrote the manuscript, with input from Z.A.T. and O.P. A.E.C. and O.P. oversaw the research.

Corresponding author

Correspondence to Adam E. Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Salvador Mafe, Min Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1 and 2, and video captions 1–6.

Supplementary Video 1

Simulation of nucleation and growth of bioelectrical domains in homogeneous tissue.

Supplementary Video 2

Nucleation and growth of bioelectrical domains in a confluent culture of bi-HEK cells, example 1.

Supplementary Video 3

Nucleation and growth of bioelectrical domains in a confluent culture of bi-HEK cells, example 2.

Supplementary Video 4

Switching of discrete bistable bioelectrical domains in disordered culture of bi-HEK cells.

Supplementary Video 5

Simulation of switching of discrete bistable bioelectrical domains in disordered tissue.

Supplementary Video 6

Depolarization via domain wall propagation in a confluent culture of human iPSC-derived myocytes.

Source data

Source Data Fig. 2

Fluorescence vs. time for Fig. 2e

Source Data Fig. 3

Fluorescence vs. time for Fig. 3f

Source Data Fig. 4

Fluorescence vs. time for Fig. 4c,g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNamara, H.M., Salegame, R., Tanoury, Z.A. et al. Bioelectrical domain walls in homogeneous tissues. Nat. Phys. 16, 357–364 (2020). https://doi.org/10.1038/s41567-019-0765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0765-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing