Observation of exciton polariton condensation in a perovskite lattice at room temperature


Exciton polaritons, with extremely low effective mass1, are regarded as promising candidates to realize Bose–Einstein condensation in lattices for quantum simulations2 towards room-temperature operations3,4,5,6,7,8. Along with the condensation, an efficient exciton polariton quantum simulator9 would require a strong lattice with robust polariton trapping as well as strong intersite coupling to allow coherent quantum motion of polaritons within the lattice. A strong lattice can be characterized with a larger forbidden bandgap opening and a larger lattice bandwidth compared with the linewidth. However, exciton polaritons in such strong lattices have only been shown to condense at cryogenic temperatures3,4,5,6,7,8. Here, we report the observation of non-equilibrium exciton polariton condensation in a one-dimensional strong lead halide perovskite lattice at room temperature. Modulated by deep periodic potentials, the strong lead halide perovskite lattice exhibits a large forbidden bandgap opening up to 13.3 meV and a lattice band up to 8.5 meV wide, which are at least 10 times larger than previous systems. Above a critical density, we observe polariton condensation into py orbital states with long-range spatial coherence at room temperature. Our result opens the route to the implementation of polariton condensates in quantum simulators at room temperature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic diagram and characterization of the one-dimensional perovskite lattice.
Fig. 2: Momentum-space and real-space imaging of the one-dimensional perovskite lattice at room temperature.
Fig. 3: Characterization of exciton polariton condensation in the one-dimensional perovskite lattice at room temperature.
Fig. 4: Build-up of long-range spatial coherence in the condensation regime of the one-dimensional perovskite lattice at room temperature.

Data availability

The data represented in Figs. 2–4 are available with the paper as source data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

Code availability

The code to reproduce the analysis in this study is available from the corresponding author on reasonable request.


  1. 1.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Article  Google Scholar 

  2. 2.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Schneider, C. et al. Exciton-polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Lai, C. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–533 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Cerda-Méndez, E. et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Whittaker, C. et al. Exciton polaritons in a two-dimensional Lieb lattice with spin–orbit coupling. Phys. Rev. Lett. 120, 097401 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Amo, A. & Bloch, J. Exciton-polaritons in lattices: a non-linear photonic simulator. C. R. Phys. 17, 934–945 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Krizhanovskii, D. et al. Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities. Phys. Rev. B 80, 045317 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Sala, V. et al. Spin-orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).

    Google Scholar 

  13. 13.

    Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoğlu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nat. Commun. 4, 1749 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Ohadi, H. et al. Tunable magnetic alignment between trapped exciton-polariton condensates. Phys. Rev. Lett. 116, 106403 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Gao, T. et al. Controlled ordering of topological charges in an exciton-polariton chain. Phys. Rev. Lett. 121, 225302 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Kéna-Cohen, S. & Forrest, S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Zhang, L. et al. Weak lasing in one-dimensional polariton superlattices. Proc. Natl Acad. Sci. USA 112, E1516–E1519 (2015).

    Article  Google Scholar 

  23. 23.

    Lanty, G., Brehier, A., Parashkov, R., Lauret, J.-S. & Deleporte, E. Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys. 10, 065007 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Wang, J. et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano 12, 8382–8389 (2018).

    Article  Google Scholar 

  25. 25.

    Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Zhang, Q. et al. High‐quality whispering‐gallery‐mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    Article  Google Scholar 

  29. 29.

    Baboux, F. et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116, 066402 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Winkler, K. et al. Collective state transitions of exciton-polaritons loaded into a periodic potential. Phys. Rev. B 93, 121303 (2016).

    ADS  Article  Google Scholar 

Download references


Q.X. acknowledges strong support from Singapore Ministry of Education via AcRF Tier 3 Programme ‘Geometrical Quantum Materials’ (MOE2018-T3-1-002), AcRF Tier 2 grant MOE2015-T2-1-047 and Tier 1 grants RG103/15 and RG113/16. T.C.H.L. acknowledges the support of the Singapore Ministry of Education via AcRF Tier 2 grants (MOE2017-T2-1-001 and MOE2018-T2-02-068).

Author information




R.S. fabricated the device and performed all the optical measurements. S.G. and T.C.H.L. performed the theoretical calculations. S.L. conducted the atomic force microscopy measurements. J.W and C.D. discussed the results. R.S., S.G., T.C.H.L. and Q.X. analysed the data and wrote the manuscript, with input from all the authors. T.C.H.L. and Q.X. supervised the whole project.

Corresponding authors

Correspondence to Timothy C. H. Liew or Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8 and Figs. 1–11.

Source data

Source Data Fig. 2

Source data for Fig. 2

Source Data Fig. 3

Source data for Fig. 3

Source Data Fig. 4

Source data for Fig. 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, R., Ghosh, S., Wang, J. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020). https://doi.org/10.1038/s41567-019-0764-5

Download citation

Further reading