Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin-orbit-controlled metal–insulator transition in Sr2IrO4


In the context of correlated insulators, where electron–electron interactions (U) drive the localization of charge carriers, the metal–insulator transition is described as either bandwidth- or filling-controlled1. Motivated by the challenge of the insulating phase in Sr2IrO4, a new class of correlated insulators has been proposed, in which spin–orbit coupling (SOC) is believed to renormalize the bandwidth of the half-filled jeff = 1/2 doublet, allowing a modest U to induce a charge-localized phase2,3. Although this framework has been tacitly assumed, a thorough characterization of the ground state has been elusive4,5. Furthermore, direct evidence for the role of SOC in stabilizing the insulating state has not been established, because previous attempts at revealing the role of SOC6,7 have been hindered by concurrently occurring changes to the filling8,9,10. We overcome this challenge by employing multiple substituents that introduce well-defined changes to the signatures of SOC and carrier concentration in the electronic structure, as well as a new methodology that allows us to monitor SOC directly. Specifically, we study Sr2Ir1−xTxO4 (T = Ru, Rh) by angle-resolved photoemission spectroscopy, combined with ab initio and supercell tight-binding calculations. This allows us to distinguish relativistic and filling effects, thereby establishing conclusively the central role of SOC in stabilizing the insulating state of Sr2IrO4. Most importantly, we estimate the critical value for SOC in this system to be λc = 0.42 ± 0.01 eV, and provide the first demonstration of a spin–orbit-controlled metal–insulator transition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dependence of the MIT on Rh and Ru substitution.
Fig. 2: ARPES linewidth evolution with substitution.
Fig. 3: Reduction of SOC through supercell analysis.
Fig. 4: Observation of the reduction of SOC via the ARPES dipole matrix element.

Data availability

The data represented in Figs. 2 and 3 are available as source data in Supplementary Data 2 and 3. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

    ADS  Google Scholar 

  2. 2.

    Kim, B. J. et al. Novel J eff=1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

    ADS  Google Scholar 

  3. 3.

    Kim, B. J. et al. Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

    ADS  Google Scholar 

  4. 4.

    MorettiSala, M., Boseggia, S., McMorrow, D. F. & Monaco, G. Resonant X-ray scattering and the j eff=1/2 electronic ground state in iridate perovskites. Phys. Rev. Lett. 112, 026403 (2014).

    ADS  Google Scholar 

  5. 5.

    Kim, B. J. & Khaliullin, G. Resonant inelastic X-ray scattering operators for t 2g orbital systems. Phys. Rev. B 96, 085108 (2017).

    ADS  Google Scholar 

  6. 6.

    Qi, T. F. et al. Spin–orbit tuned metal–insulator transitions in single-crystal Sr2Ir1−xRhxO4 (0 ≤ x ≤ 1). Phys. Rev. B 86, 125105 (2012).

    ADS  Google Scholar 

  7. 7.

    Lee, J. S., Krockenberger, Y., Takahashi, K. S., Kawasaki, M. & Tokura, Y. Insulator–metal transition driven by change of doping and spin–orbit interaction in Sr2IrO4. Phys. Rev. B 85, 035101 (2012).

    ADS  Google Scholar 

  8. 8.

    Brouet, V. et al. Transfer of spectral weight across the gap of Sr2IrO4ind induced by La doping. Phys. Rev. B 92, 081117 (2015).

    ADS  Google Scholar 

  9. 9.

    Cao, Y. et al. Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. Nat. Commun. 7, 11367 (2016).

    ADS  Google Scholar 

  10. 10.

    Louat, A. et al. Formation of an incoherent metallic state in Rh-doped Sr2IrO4. Phys. Rev. B 97, 161109 (2018).

    ADS  Google Scholar 

  11. 11.

    Mattheiss, L. F. Electronic structure of RuO2, OsO2 and IrO2. Phys. Rev. B 13, 2433–2450 (1976).

    ADS  Google Scholar 

  12. 12.

    Moon, S. J. et al. Dimensionality-controlled insulator–metal transition and correlated metallic state in 5 d transition metal oxides Srn+ 1IrnO3n + 1 (n = 1, 2 and ∞). Phys. Rev. Lett. 101, 226402 (2008).

    ADS  Google Scholar 

  13. 13.

    Kim, B. H., Khaliullin, G. & Min, B. I. Magnetic couplings, optical spectra and spin–orbit exciton in 5d electron Mott insulator Sr2IrO4. Phys. Rev. Lett. 109, 167205 (2012).

    ADS  Google Scholar 

  14. 14.

    Haverkort, M. W., Elfimov, I. S., Tjeng, L. H., Sawatzky, G. A. & Damascelli, A. Strong spin–orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. Phys. Rev. Lett. 101, 026406 (2008).

    ADS  Google Scholar 

  15. 15.

    Veenstra, C. N. et al. Spin–orbital entanglement and the breakdown of singlets and triplets in Sr2RuO4 revealed by spin- and angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 112, 127002 (2014).

    ADS  Google Scholar 

  16. 16.

    Earnshaw, A., Figgis, B. N., Lewis, J. & Peacock, R. D. The magnetic properties of some d 4-complexes. J. Chem. Soc. 0, 3132 (1961).

    Google Scholar 

  17. 17.

    Mravlje, J. et al. Coherence–incoherence crossover and the mass-renormalization puzzles in Sr2RuO4. Phys. Rev. Lett. 106, 096401 (2011).

    ADS  Google Scholar 

  18. 18.

    Martins, C., Aichhorn, M., Vaugier, L. & Biermann, S. Reduced effective spin–orbital degeneracy and spin–orbital ordering in paramagnetic transition-metal oxides: Sr2IrO4 versus Sr2RhO4. Phys. Rev. Lett. 107, 266404 (2011).

    ADS  Google Scholar 

  19. 19.

    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    ADS  Google Scholar 

  20. 20.

    Cava, R. J. et al. Localized-to-itinerant electron transition in Sr2Ir1 − xRuxO4. Phys. Rev. B 49, 11890 (1994).

    ADS  Google Scholar 

  21. 21.

    Yuan, S. J. et al. From J eff=1/2 insulator to J eff=1/2 -wave superconductor in single-crystal J eff=1/2. Phys. Rev. B 92, 245103 (2015).

    ADS  Google Scholar 

  22. 22.

    Wang, Z. et al. Disorder induced power-law gaps in an insulatormetal Mott transition. Proc. Natl Acad. Sci. USA 115, 11198 (2018).

    ADS  Google Scholar 

  23. 23.

    Martins, C. Interplay of Spin–Orbit Coupling and Electronic Coulomb Interactions in Strontium Iridate Sr 2IrO 4. Thesis, Ecole Polytechnique X (2010).

  24. 24.

    Heidarian, D. & Trivedi, N. Inhomogeneous metallic phase in a disordered Mott insulator in two dimensions. Phys. Rev. Lett. 93, 126401 (2004).

    ADS  Google Scholar 

  25. 25.

    Kaminski, A. et al. Renormalization of spectral line shape and dispersion below T c in Bi2Sr2CaCu2O8 + δ. Phys. Rev. Lett. 86, 1070–1073 (2001).

    ADS  Google Scholar 

  26. 26.

    Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. T109, 61 (2004).

    ADS  Google Scholar 

  27. 27.

    Hufner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 1995).

  28. 28.

    Mahan, G. D. in Electron and Ion Spectroscopy of Solids (ed. Fiermans, L.) Ch. 1, 1–53 (Plenum Press, 1978).

  29. 29.

    Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).

    Google Scholar 

  30. 30.

    Hu, J., Alicea, J., Wu, R. & Franz, M. Giant topological insulator gap in graphene with 5d adatoms. Phys. Rev. Lett. 109, 266801 (2012).

    ADS  Google Scholar 

  31. 31.

    Carter, S. A. et al. Mechanism for the metal–insulator transition in Sr2Ir1−xRuxO4. Phys. Rev. B 51, 17184–17187 (1995).

    ADS  Google Scholar 

  32. 32.

    Glamazda, A. et al. Effects of hole doping on magnetic and lattice excitations in Sr2Ir1−xRuxO4 (x = 0–0.2). Phys. Rev. B 89, 104406 (2014).

    ADS  Google Scholar 

  33. 33.

    Calder, S. et al. Strong anisotropy within a Heisenberg model in the J eff=1/2 insulating state of Sr2Ir0.8Ru0.2O4. Phys. Rev. B 94, 220407 (2016).

    ADS  Google Scholar 

  34. 34.

    Wadati, H., Elfimov, I. & Sawatzky, G. A. Where are the extra d electrons in transition-metal-substituted iron pnictides? Phys. Rev. Lett. 105, 157004 (2010).

    ADS  Google Scholar 

  35. 35.

    Levy, G. et al. Probing the role of Co substitution in the electronic structure of iron pnictides. Phys. Rev. Lett. 109, 077001 (2012).

    ADS  Google Scholar 

  36. 36.

    Boykin, T. B. & Klimeck, G. Practical application of zone-folding concepts in tight-binding calculations. Phys. Rev. B 71, 115215 (2005).

    ADS  Google Scholar 

  37. 37.

    Ku, W., Berlijn, T. & Lee, C. C. Unfolding first-principles band structures. Phys. Rev. Lett. 104, 216401 (2010).

    ADS  Google Scholar 

  38. 38.

    Haverkort, M. W., Elfimov, I. S. & Sawatzky, G. A. Electronic structure and self energies of randomly substituted solids using density functional theory and model calculations. Preprint at (2011).

  39. 39.

    Popescu, V. & Zunger, A. Extracting E versus \(\vec k\)E effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85, 085201 (2012).

    ADS  Google Scholar 

  40. 40.

    Watanabe, H., Shirakawa, T. & Yunoki, S. Microscopic study of a spin–orbit-induced Mott insulator in Ir oxides. Phys. Rev. Lett. 105, 216410 (2010).

    ADS  Google Scholar 

  41. 41.

    Fluegel, B. et al. Giant spin–orbit bowing in GaAs1-xBix. Phys. Rev. Lett. 97, 067205 (2006).

    ADS  Google Scholar 

  42. 42.

    Xu, S.-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    ADS  Google Scholar 

  43. 43.

    Sato, T. et al. Unexpected mass acquisition of dirac fermions at the quantum phase transition of a topological insulator. Nat. Phys 7, 840 (2011).

    Google Scholar 

  44. 44.

    Brahlek, M. et al. Topological-metal to band-insulator transition in (Bi1-xInx)2Se3 thin films. Phys. Rev. Lett. 109, 186403 (2012).

    ADS  Google Scholar 

  45. 45.

    Wu, L. et al. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1-xInx)2Se3. Nat. Phys. 9, 410 (2013).

    Google Scholar 

  46. 46.

    Vobornik, I. et al. Observation of distinct bulk and surface chemical environments in a topological insulator under magnetic doping. J. Phys. Chem. C 118, 12333–12339 (2014).

    Google Scholar 

  47. 47.

    Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    ADS  Google Scholar 

  48. 48.

    Straßer, C. et al. Long- versus short-range scattering in doped epitaxial graphene. Nano Lett. 15, 2825–2829 (2015).

    ADS  Google Scholar 

  49. 49.

    Barker, B. A. et al. Geometry and electronic structure of iridium adsorbed on graphene. Phys. Rev. B 99, 075431 (2019).

    ADS  Google Scholar 

  50. 50.

    Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    ADS  MATH  Google Scholar 

  51. 51.

    Blaha, P. et al. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, 2018).

  52. 52.

    Kuneš, J. et al. Wien2wannier: from linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

    ADS  MATH  Google Scholar 

  53. 53.

    Day, R. P., Zwartsenberg, B., Elfimov, I. S. & Damascelli, A. Computational framework chinook for angle-resolved photoemission spectroscopy. Npj Quantum Mater. 4, 54 (2019).

    ADS  Google Scholar 

Download references


We thank A. Nocera, M. Franz and G.A. Sawatzky for critical reading of the manuscript and useful discussions. This research was undertaken thanks in part to funding from the Max Planck-UBC-UTokyo Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The work at UBC was supported by the Killam, Alfred P. Sloan and Natural Sciences and Engineering Research Council of Canada’s (NSERC’s) Steacie Memorial Fellowships (A.D.), the Alexander von Humboldt Fellowship (A.D.), the Canada Research Chairs Program (A.D.), NSERC, Canada Foundation for Innovation (CFI) and the CIFAR Quantum Materials Program. E.R. acknowledges support from the Swiss National Science Foundation (SNSF, grant no. P300P2_164649). B.J.K. was supported by IBS - R014-A2.

Author information




B.Z. and A.D. conceived the experiment. B.Z., E.R. and M.M. collected the experimental data. N.X., M.S. and J.D.D. provided experimental support. G.C., S.C., K.U., J.B., H.T. and B.J.K. grew the single crystals. B.Z. and R.P.D. performed data analysis. B.Z. performed simulations, with input from R.P.D., I.S.E. and A.D. B.Z., R.P.D. and A.D. wrote the manuscript, with input from all authors. I.S.E. and A.D. supervised the project. A.D. was responsible for overall project direction, planning and management.

Corresponding author

Correspondence to A. Damascelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer Review Information Nature Physics thanks Fahad Mahmood and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, discussion and references.

Source data

Source Data Fig. 2

Source data for Fig. 2 panels.

Source Data Fig. 3

Source data for Fig. 3 panels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zwartsenberg, B., Day, R.P., Razzoli, E. et al. Spin-orbit-controlled metal–insulator transition in Sr2IrO4. Nat. Phys. 16, 290–294 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing