Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mathematical languages shape our understanding of time in physics

A Publisher Correction to this article was published on 16 January 2020

This article has been updated

Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would offer a perspective that is closer to our experience of physical reality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Debating mathematicians.

Left: INTERFOTO / Alamy Stock Photo; right: reprinted with permission from ref. 18, Springer

Change history

  • 16 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Weyl, H. The Continuum (Dover, 1994).

  2. 2.

    Gödel, K. Collected Works Vol. IV (eds Feferman, S. et al.) p. 269 (Oxford Univ. Press, 1995).

  3. 3.

    Dolev, Y. Eur. J. Philos. Sci. 8, 455–469 (2018).

    MathSciNet  Article  Google Scholar 

  4. 4.

    Darbour, J. The End of Time (Oxford Univ. Press, 2001).

  5. 5.

    Gisin, N. Erkenntnis (2019).

  6. 6.

    Posy, C. J. J. Philos. Logic 5, 91–132 (1976).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Posy, C. J. Mathematical Intuitionism (Cambridge Univ. Press, in the press).

  8. 8.

    Hilbert, D. in Philosophy of Mathematics (eds Benacerraf, P. & Putnam, H.) 183–201 (Cambridge Univ. Press, 1984).

  9. 9.

    Ellis, G. F. R., Meissner, K. A. & Nicolai, H. Nat. Phys. 14, 770–772 (2018).

    Article  Google Scholar 

  10. 10.

    Born, M. Physics in My Generation (Springer, 1969).

  11. 11.

    Dowek, G. in Computer Science – Theory and Applications (eds Bulatov, A. A. & Shur, A. M.) 347–353 (Springer, 2013).

  12. 12.

    Chaitin, G. in Meta Math! Ch. 5 (Vintage, 2008).

  13. 13.

    Chatin, G. J. Preprint at (2004).

  14. 14.

    Borel, E. in From Brouwer to Hilbert (ed. Mancosu, P.) 296–300 (Oxford Univ. Press, 1998).

  15. 15.

    Iemhoff, R. Intuitionism in the philosophy of mathematics. Stanford Encyclopedia of Philosophy (Summer 2019 Edition) (2019).

  16. 16.

    Gisin, N. Quantum Stud.: Math. Found. (2019).

  17. 17.

    Palmer, T. N. Nat. Rev. Phys. 1, 463–471 (2019).

    Article  Google Scholar 

  18. 18.

    van Dalen, D. L.E.J. Brouwer – Topologist, Intuitionalist, Philosopher (Springer, 2013).

  19. 19.

    Brouwer, L. E. J. in Proc. 10th International Congress of Philosophy, vol. III (North-Holland, 1949).

Download references

Author information



Corresponding author

Correspondence to Nicolas Gisin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gisin, N. Mathematical languages shape our understanding of time in physics. Nat. Phys. 16, 114–116 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing