Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would offer a perspective that is closer to our experience of physical reality.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Indeterminism in physics and intuitionistic mathematics
Synthese Open Access 03 September 2021
Access options
Subscribe to Nature+
Get immediate online access to the entire Nature family of 50+ journals
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

Left: INTERFOTO / Alamy Stock Photo; right: reprinted with permission from ref. 18, Springer
Change history
16 January 2020
A Correction to this paper has been published: https://doi.org/10.1038/s41567-020-0794-z
References
Weyl, H. The Continuum (Dover, 1994).
Gödel, K. Collected Works Vol. IV (eds Feferman, S. et al.) p. 269 (Oxford Univ. Press, 1995).
Dolev, Y. Eur. J. Philos. Sci. 8, 455–469 (2018).
Darbour, J. The End of Time (Oxford Univ. Press, 2001).
Gisin, N. Erkenntnis https://doi.org/10.1007/s10670-019-00165-8 (2019).
Posy, C. J. J. Philos. Logic 5, 91–132 (1976).
Posy, C. J. Mathematical Intuitionism (Cambridge Univ. Press, in the press).
Hilbert, D. in Philosophy of Mathematics (eds Benacerraf, P. & Putnam, H.) 183–201 (Cambridge Univ. Press, 1984).
Ellis, G. F. R., Meissner, K. A. & Nicolai, H. Nat. Phys. 14, 770–772 (2018).
Born, M. Physics in My Generation (Springer, 1969).
Dowek, G. in Computer Science – Theory and Applications (eds Bulatov, A. A. & Shur, A. M.) 347–353 (Springer, 2013).
Chaitin, G. in Meta Math! Ch. 5 (Vintage, 2008).
Chatin, G. J. Preprint at https://arxiv.org/abs/math/0411418 (2004).
Borel, E. in From Brouwer to Hilbert (ed. Mancosu, P.) 296–300 (Oxford Univ. Press, 1998).
Iemhoff, R. Intuitionism in the philosophy of mathematics. Stanford Encyclopedia of Philosophy (Summer 2019 Edition) https://go.nature.com/2E99Hqe (2019).
Gisin, N. Quantum Stud.: Math. Found. https://doi.org/10.1007/s40509-019-00211-8 (2019).
Palmer, T. N. Nat. Rev. Phys. 1, 463–471 (2019).
van Dalen, D. L.E.J. Brouwer – Topologist, Intuitionalist, Philosopher (Springer, 2013).
Brouwer, L. E. J. in Proc. 10th International Congress of Philosophy, vol. III (North-Holland, 1949).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gisin, N. Mathematical languages shape our understanding of time in physics. Nat. Phys. 16, 114–116 (2020). https://doi.org/10.1038/s41567-019-0748-5
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-019-0748-5
Further reading
-
Cauchy’s Logico-Linguistic Slip, the Heisenberg Uncertainty Principle and a Semantic Dilemma Concerning “Quantum Gravity”
International Journal of Theoretical Physics (2022)
-
Indeterminism in physics and intuitionistic mathematics
Synthese (2021)
-
Intuitionist Physics
Foundations of Physics (2020)