Electromagnetically induced transparency at a chiral exceptional point


Electromagnetically induced transparency, as a quantum interference effect to eliminate optical absorption in an opaque medium, has found extensive applications in slow-light generation, optical storage, frequency conversion, optical quantum memory and enhanced nonlinear interactions at the few-photon level in all kinds of systems. Recently, there has been great interest in exceptional points, a type of spectral singularity that could be reached by tuning various parameters in open systems, to render unusual features to the physical systems, such as optical states with chirality. Here we theoretically and experimentally study transparency and absorption modulated by chiral optical states at exceptional points in an indirectly coupled resonator system. By tuning one resonator to an exceptional point, transparency or absorption occurs depending on the chirality of the eigenstate. Our results demonstrate a new strategy to manipulate the light flow and the spectra of a photonic resonator system by exploiting a discrete optical state associated with a specific chirality at an exceptional point as a unique control bit. Such an approach is compatible with the state control utilized in quantum gate operation and may open up new avenues for controlling slow light using optical states for optical quantum memory and computing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Indirectly coupled WGM microresonators with manipulation of chirality.
Fig. 2: Level diagrams of indirectly coupled WGM microresonators.
Fig. 3: Absorption at EP with chirality −1.
Fig. 4: Transparency at EP+ with chirality 1.

Data availability

The data represented in Figs. 14 are available in Supplementary Data 14. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Google Scholar 

  2. 2.

    Project, P. et al. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

    Google Scholar 

  3. 3.

    Boller, K. J., Imamoğlu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    ADS  Google Scholar 

  4. 4.

    Akulshin, A. M., Barreiro, S. & Lezama, A. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys. Rev. A 57, 2996–3002 (1998).

    ADS  Google Scholar 

  5. 5.

    Röhlsberger, R., Wille, H.-C., Schlage, K. & Sahoo, B. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012).

    ADS  Google Scholar 

  6. 6.

    Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010).

    ADS  Google Scholar 

  7. 7.

    Papasimakis, N., Fedotov, V. A., Prosvirnin, S. L. & Zheludev, N. I. A metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008).

    ADS  Google Scholar 

  8. 8.

    Jain, A. et al. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys. Rev. Lett. 109, 187401 (2012).

    ADS  Google Scholar 

  9. 9.

    Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009).

    ADS  Google Scholar 

  10. 10.

    Taubert, R., Hentschel, M., Kästel, J. & Giessen, H. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett. 12, 1367–1371 (2012).

    ADS  Google Scholar 

  11. 11.

    Dyer, G. C. et al. Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat. Photon. 7, 925–930 (2013).

    ADS  Google Scholar 

  12. 12.

    Hsu, C. W., DeLacy, B. G., Johnson, S. G., Joannopoulos, J. D. & Soljacic, M. Theoretical criteria for scattering dark states in nanostructured particles. Nano Lett. 14, 2783–2788 (2014).

    ADS  Google Scholar 

  13. 13.

    Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).

    ADS  Google Scholar 

  14. 14.

    Xu, Q., Dong, P. & Lipson, M. Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3, 406–410 (2007).

    Google Scholar 

  15. 15.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Google Scholar 

  16. 16.

    Weis, S. et al. Optomechanically induced transparency. Science 330, 1515–1520 (2010).

    ADS  Google Scholar 

  17. 17.

    Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    ADS  Google Scholar 

  18. 18.

    Lü, H., Wang, C., Yang, L. & Jing, H. Optomechanically induced transparency at exceptional points. Phys. Rev. Appl. 10, 14006 (2018).

    ADS  Google Scholar 

  19. 19.

    Anisimov, P. M., Dowling, J. P. & Sanders, B. C. Objectively discerning Autler-Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett. 107, 163604 (2011).

    ADS  Google Scholar 

  20. 20.

    Abdumalikov, A. A. et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010).

    ADS  Google Scholar 

  21. 21.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    ADS  Google Scholar 

  22. 22.

    Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    ADS  Google Scholar 

  23. 23.

    Pang, M., He, W., Jiang, X. & Russell, P. S. J. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photon. 10, 454–458 (2016).

    ADS  Google Scholar 

  24. 24.

    Wu, B. et al. Slow light on a chip via atomic quantum state control. Nat. Photon. 4, 776–779 (2010).

    ADS  Google Scholar 

  25. 25.

    Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    ADS  Google Scholar 

  26. 26.

    Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    ADS  Google Scholar 

  27. 27.

    Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015).

    ADS  MathSciNet  Google Scholar 

  28. 28.

    El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  29. 29.

    Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    ADS  Google Scholar 

  30. 30.

    Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet  Google Scholar 

  31. 31.

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    ADS  Google Scholar 

  32. 32.

    Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017).

    ADS  Google Scholar 

  33. 33.

    Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS  Google Scholar 

  34. 34.

    Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    ADS  Google Scholar 

  35. 35.

    Hahn, C. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86–90 (2018).

    ADS  Google Scholar 

  36. 36.

    Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).

    ADS  Google Scholar 

  37. 37.

    Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016).

    ADS  Google Scholar 

  38. 38.

    Zhao, H. et al. Metawaveguide for asymmetric interferometric light–light switching. Phys. Rev. Lett. 117, 193901 (2016).

    ADS  Google Scholar 

  39. 39.

    Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Google Scholar 

  40. 40.

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    ADS  Google Scholar 

  41. 41.

    Liu, Y.-C., Li, B.-B. & Xiao, Y.-F. Electromagnetically induced transparency in optical microcavities. Nanophotonics 6, 789–811 (2017).

    Google Scholar 

  42. 42.

    Ruan, Z. & Fan, S. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 105, 013901 (2010).

    ADS  Google Scholar 

  43. 43.

    Verslegers, L., Yu, Z., Ruan, Z., Catrysse, P. B. & Fan, S. From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. Phys. Rev. Lett. 108, 083902 (2012).

    ADS  Google Scholar 

  44. 44.

    Qian, C. et al. Experimental observation of superscattering. Phys. Rev. Lett. 122, 063901 (2019).

    ADS  Google Scholar 

  45. 45.

    Lezama, A., Barreiro, S. & Akulshin, A. M. Electromagnetically induced absorption. Phys. Rev. A 59, 4732–4735 (1999).

    ADS  Google Scholar 

  46. 46.

    Taichenachev, A. V., Tumaikin, A. M. & Yudin, V. I. Electromagnetically induced absorption in a four-state system. Phys. Rev. A 61, 011802 (1999).

    ADS  Google Scholar 

  47. 47.

    Zhang, M. et al. Broadband electro-optic frequency comb generation in an integrated microring resonator. Nature 568, 373–377 (2018).

    ADS  Google Scholar 

  48. 48.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS  Google Scholar 

  49. 49.

    Zhu, J., Özdemir, Ş. K., He, L. & Yang, L. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express 18, 23535–23543 (2010).

    ADS  Google Scholar 

  50. 50.

    Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).

    ADS  Google Scholar 

Download references


This work was supported by NSF grant no. EFMA1641109, ARO grant no. W911NF1710189 and DARPA under grant HR00111820042. A.D.S. acknowledges the support of NSF grant no. DMR-1743235. L.J. acknowledges the support of the Packard Foundation (2013-39273).

Author information




X.J., C.W. and L.Y. conceived the idea and designed the experiments. C.W. and X.J. performed the experiments with help from G.Z. and B.P. C.W. analysed experimental data with help from X.J. and M.Z. Theoretical background and simulations were provided by C.W. with help from M.Z., C.W.H., L.J. and A.D.S. All authors discussed the results and wrote the manuscript. L.Y. supervised the project.

Corresponding author

Correspondence to Lan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion.

Supplementary Data 1

The data corresponding to the graphs in Fig 1.

Supplementary Data 2

The data corresponding to the graphs in Fig 2.

Supplementary Data 3

The data corresponding to the graphs in Fig 3.

Supplementary Data 4

The data corresponding to the graphs in Fig 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Jiang, X., Zhao, G. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020). https://doi.org/10.1038/s41567-019-0746-7

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing