Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Network experiment demonstrates converse symmetry breaking

Abstract

Symmetry breaking—the phenomenon in which the symmetry of a system is not inherited by its stable states—underlies pattern formation, superconductivity and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking, a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be non-identical in order to exhibit identical behaviour, such as in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably non-identical and that converse symmetry breaking persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experiment involving a network of coupled electromechanical oscillators.
Fig. 2: Oscillator heterogeneity breaks the symmetry of the dominant eigenmodes.
Fig. 3: Experimental confirmation of converse symmetry breaking.

Similar content being viewed by others

Data availability

The data represented in Figs. 13 are provided with the paper as source data. All other data that support results in this Article are available from the corresponding author upon reasonable request.

Code availability

The custom code used for the analysis of the data from the experiment is available from the corresponding author upon reasonable request.

References

  1. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, 2001).

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

    ADS  MathSciNet  Google Scholar 

  3. Dörfler, F. & Bullo, F. Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014).

    MathSciNet  MATH  Google Scholar 

  4. Pecora, L. M. & Carroll, T. L. Synchronization of chaotic systems. Chaos 25, 097611 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  5. Yamaguchi, S. et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412 (2003).

    ADS  Google Scholar 

  6. Yamaguchi, Y. et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342, 85–90 (2013).

    ADS  Google Scholar 

  7. Lu, Z. et al. Resynchronization of circadian oscillators and the east–west asymmetry of jet-lag. Chaos 26, 094811 (2016).

    ADS  MathSciNet  Google Scholar 

  8. Ranta, E., Kaitala, V., Lindström, J. & Linden, H. Synchrony in population dynamics. Proc. R. Soc. Lond. B 262, 113–118 (1995).

    ADS  Google Scholar 

  9. Schwartz, M. K., Mills, L. S., McKelvey, K. S., Ruggiero, L. F. & Allendorf, F. W. DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature 415, 520–522 (2002).

    Google Scholar 

  10. McClintock, M. K. Menstrual synchrony and suppression. Nature 229, 244–245 (1971).

    ADS  Google Scholar 

  11. Strogatz, S. H., Abrams, D. M., McRobie, A., Eckhardt, B. & Ott, E. Theoretical mechanics: crowd synchrony on the Millennium Bridge. Nature 438, 43–44 (2005).

    ADS  Google Scholar 

  12. Rosin, D. P., Rontani, D., Gauthier, D. J. & Schöll, E. Control of synchronization patterns in neural-like Boolean networks. Phys. Rev. Lett. 110, 104102 (2013).

    ADS  Google Scholar 

  13. Fischer, I. et al. Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006).

    ADS  Google Scholar 

  14. Zamora-Munt, J., Masoller, C., García-Ojalvo, J. & Roy, R. Crowd synchrony and quorum sensing in delay-coupled lasers. Phys. Rev. Lett. 105, 264101 (2010).

    ADS  Google Scholar 

  15. Argyris, A., Bourmpos, M. & Syvridis, D. Experimental synchrony of semiconductor lasers in coupled networks. Opt. Express 24, 5600–5614 (2016).

    ADS  Google Scholar 

  16. Kiss, I. Z., Zhai, Y. & Hudson, J. L. Emerging coherence in a population of chemical oscillators. Science 296, 1676–1678 (2002).

    ADS  Google Scholar 

  17. Kiss, I. Z., Rusin, C. G., Kori, H. & Hudson, J. L. Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316, 1886–1889 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  18. Fon, W. et al. Complex dynamical networks constructed with fully controllable nonlinear nanomechanical oscillators. Nano Lett. 17, 5977–5983 (2017).

    ADS  Google Scholar 

  19. Hill, D. J. & Chen, G. Power systems as dynamic networks. In Proceedings of the 2006 IEEE International Symposium on Circuits and Systems 722–725 (IEEE, 2006).

  20. Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013).

    Google Scholar 

  21. Dörfler, F., Chertkov, M. & Bullo, F. Synchronization in complex oscillator networks and smart grids. Proc. Natl Acad. Sci. USA 110, 2005–2010 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  22. Nishikawa, T. & Motter, A. E. Symmetric states requiring system asymmetry. Phys. Rev. Lett. 117, 114101 (2016).

    ADS  Google Scholar 

  23. Okuda, K. & Kuramoto, Y. Mutual entrainment between populations of coupled oscillators. Prog. Theor. Phys. 86, 1159–1176 (1991).

    ADS  MathSciNet  Google Scholar 

  24. Golubitsky, M., Stewart, I. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory Vol. 2 (Springer, 1988).

  25. Golubitsky, M. & Stewart, I. Symmetry and pattern formation in coupled cell networks. In Pattern Formation in Continuous and Coupled Systems 65–82 (Springer, 1999).

  26. Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A. & Latora, V. Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2013).

    ADS  Google Scholar 

  27. Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E. & Roy, R. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014).

    ADS  Google Scholar 

  28. Whalen, A. J., Brennan, S. N., Sauer, T. D. & Schiff, S. J. Observability and controllability of nonlinear networks: the role of symmetry. Phys. Rev. X 5, 011005 (2015).

    Google Scholar 

  29. Sorrentino, F., Pecora, L. M., Hagerstrom, A. M., Murphy, T. E. & Roy, R. Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv. 2, e1501737 (2016).

    ADS  Google Scholar 

  30. Zhang, L., Motter, A. E. & Nishikawa, T. Incoherence-mediated remote synchronization. Phys. Rev. Lett. 118, 174102 (2017).

    ADS  Google Scholar 

  31. Cho, Y. S., Nishikawa, T. & Motter, A. E. Stable chimeras and independently synchronizable clusters. Phys. Rev. Lett. 119, 084101 (2017).

    ADS  Google Scholar 

  32. Barrett, W., Francis, A. & Webb, B. Equitable decompositions of graphs with symmetries. Linear Algebra Appl. 513, 409–434 (2017).

    MathSciNet  MATH  Google Scholar 

  33. MacArthur, B. D., Sánchez-García, R. J. & Anderson, J. W. Symmetry in complex networks. Discrete Appl. Math. 156, 3525–3531 (2008).

    MathSciNet  MATH  Google Scholar 

  34. Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002).

    Google Scholar 

  35. Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004).

    ADS  Google Scholar 

  36. Panaggio, M. J. & Abrams, D. M. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  37. Hagerstrom, A. M. et al. Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658–661 (2012).

    Google Scholar 

  38. Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662–665 (2012).

    Google Scholar 

  39. Martens, E. A., Thutupalli, S., Fourrière, A. & Hallatschek, O. Chimera states in mechanical oscillator networks. Proc. Natl Acad. Sci. USA 110, 10563–10567 (2013).

    ADS  Google Scholar 

  40. Hart, J. D., Bansal, K., Murphy, T. E. & Roy, R. Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos 26, 094801 (2016).

    ADS  MathSciNet  Google Scholar 

  41. Zhang, Y., Nishikawa, T. & Motter, A. E. Asymmetry-induced synchronization in oscillator networks. Phys. Rev. E 95, 062215 (2017).

    ADS  Google Scholar 

  42. Zhang, Y. & Motter, A. E. Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together. Nonlinearity 31, R1 (2017).

    MathSciNet  MATH  Google Scholar 

  43. Grainger, J. & Stevenson, W. Power System Analysis (McGraw-Hill, 1994).

  44. Anderson, P. M. & Fouad, A. A. Power System Control and Stability (IEEE Press, 2003).

  45. Nishikawa, T. & Motter, A. E. Comparative analysis of existing models for power-grid synchronization. New J. Phys. 17, 015012 (2015).

    ADS  Google Scholar 

  46. Susuki, Y., Mezić, I. & Hikihara, T. Coherent swing instability of power grids. J. Nonlinear Sci. 21, 403–439 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  47. Lozano, S., Buzna, L. & Díaz-Guilera, A. Role of network topology in the synchronization of power systems. Eur. Phys. J. B 85, 231–238 (2012).

    ADS  MATH  Google Scholar 

  48. Menck, P. J., Heitzig, J., Kurths, J. & Schellnhuber, H. J. How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014).

    ADS  Google Scholar 

  49. Auer, S., Kleis, K., Schultz, P., Kurths, J. & Hellmann, F. The impact of model detail on power grid resilience measures. Eur. Phys. J. Special Topics 225, 609–625 (2016).

    ADS  Google Scholar 

  50. Schäfer, B., Beck, C., Aihara, K., Witthaut, D. & Timme, M. Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics. Nat. Energy 3, 119–126 (2018).

    ADS  Google Scholar 

  51. Burke, J. V., Lewis, A. S. & Overton, M. L. A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optimiz. 15, 751–779 (2005).

    MathSciNet  MATH  Google Scholar 

  52. Freitas, P. & Lancaster, P. On the optimal value of the spectral abscissa for a system of linear oscillators. SIAM J. Matrix Anal. A 21, 195–208 (1999).

    MathSciNet  MATH  Google Scholar 

  53. Kirillov, O. N. & Overton, M. L. Robust stability at the swallowtail singularity. Front. Phys. 1, 1–9 (2013).

    Google Scholar 

  54. Boyd, S. Convex optimization of graph Laplacian eigenvalues. Proc. ICM 3, 1311–1319 (2006).

    MathSciNet  MATH  Google Scholar 

  55. De Abreu, N. M. M. Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423, 53–73 (2007).

    MathSciNet  MATH  Google Scholar 

  56. Zou, W. & Zhan, M. Splay states in a ring of coupled oscillators: from local to global coupling. SIAM J. Appl. Dyn. Syst. 8, 1324–1340 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  57. Uhlenbeck, G. E. & Ornstein, L. S. On the theory of the Brownian motion. Phys. Rev. 36, 823–841 (1930).

    ADS  MATH  Google Scholar 

  58. Gillespie, D. T. Markov Processes: An Introduction for Physical Scientists (Academic Press, 1991).

  59. Doob, J. L. The Brownian movement and stochastic equations. Ann. Math. 43, 351–369 (1942).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Orfanidis, S. J. Introduction to Signal Processing (Prentice Hall, 1996).

Download references

Acknowledgements

We thank J.B. Ketterson for insightful discussions about this research. This research was funded by ARO Grant No. W911NF-15-1-0272 and by Northwestern University’s Finite Earth Initiative (supported by L. McQuown and M. McQuown).

Author information

Authors and Affiliations

Authors

Contributions

F.M., T.N. and A.E.M. designed the research and contributed to the modelling. F.M. performed the experiments and simulations. F.M., T.N. and A.E.M. analysed the results and wrote the paper. All authors approved the final manuscript.

Corresponding authors

Correspondence to Takashi Nishikawa or Adilson E. Motter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Eckehard Schöll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1 and 2 and Figs. 1–5.

Supplementary Video 1

Animated versions of Fig. 2b,c of the main text, visualizing the symmetric (top row) and asymmetric (bottom row) oscillations of the dominant eigenmodes.

Source Data Fig. 1

Data represented in Fig. 1e of the main text.

Source Data Fig. 2

Data represented in Fig. 2 of the main text.

Source Data Fig. 3

Data represented in Fig. 3 of the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnar, F., Nishikawa, T. & Motter, A.E. Network experiment demonstrates converse symmetry breaking. Nat. Phys. 16, 351–356 (2020). https://doi.org/10.1038/s41567-019-0742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0742-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing