Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor

Abstract

To decipher the mechanism of high-temperature superconductivity, it is important to know how the superconducting pairing emerges from the unusual normal states of cuprate superconductors1,2,3,4, including the pseudogap5,6, strange metal7,8 and anomalous Fermi liquid9 phases. A long-standing issue is how the superconducting pairing is formed and condensed in the strange metal phase, because this is where the superconducting transition temperature is highest. Here, we use state-of-the-art high-pressure measurements to report the experimental observation of a pressure-induced crossover from two- to three-dimensional (2D to 3D) superconducting states in optimally doped Bi2Sr2CaCu2O8 + δ bulk superconductor. By analysing the temperature dependence of the resistance, we find that the 2D superconducting transition exhibits a Berezinskii–Kosterlitz–Thouless-like behaviour10. The emergence of this 2D superconducting transition provides direct evidence that the strange metal state is predominantly 2D-like. This is important for a thorough understanding of the phase diagram of cuprate superconductors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Characterization of the superconducting properties of optimally doped Bi2Sr2CaCu2O8 + δ under pressure.
Fig. 2: Rab, Rc and Δχ′ as a function of temperature for optimally doped Bi2Sr2CaCu2O8 + δ.
Fig. 3: Analysis of the 2D superconducting properties of optimally doped Bi2Sr2CaCu2O8 + δ.
Fig. 4: Pressure–TC phase diagram of optimally doped Bi2Sr2CaCu2O8 + δ.

Data availability

The data represented in Figs. 14 are available with the online version of this paper. All other data that support the findings of this study are available from the corresponding authors on request.

References

  1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  2. Zaanen, J. Superconducting electrons go missing. Nature 536, 282–283 (2016).

    Article  ADS  Google Scholar 

  3. Norman, M. R. & Pépin, C. The electronic nature of high temperature cuprate superconductors. Rep. Prog. Phys. 66, 1547–1610 (2003).

    Article  ADS  Google Scholar 

  4. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  ADS  Google Scholar 

  5. Vishik, I. M. Photoemission perspective on pseudogap, superconducting fluctuations and charge order in cuprates: a review of recent progress. Rep. Prog. Phys. 81, 062501 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  6. Ding, H. et al. Spectroscopic evidence for a pseudopgap in the normal state of underdoped high-T c superconductors. Nature 382, 51–54 (1996).

    Article  ADS  Google Scholar 

  7. Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. SciPost Phys. 6, 061 (2019).

    Article  ADS  Google Scholar 

  8. Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The strange metal state of the electron-doped cuprates. Preprint at https://arxiv.org/abs/1905.04998 (2019).

  9. Bozovic, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    Article  ADS  Google Scholar 

  10. Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex–antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    Article  ADS  Google Scholar 

  11. Bednorz, J. G. & Müller, K. A. Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  Google Scholar 

  12. Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    Article  ADS  Google Scholar 

  13. Chu, C. W., Deng, L. Z. & Lv, B. Hole-doped cuprate high temperature superconductors. Physica C 514, 290–313 (2015).

    Article  ADS  Google Scholar 

  14. Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

    Article  ADS  Google Scholar 

  15. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  16. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu–O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  17. Dagotto, E. Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

    Article  ADS  Google Scholar 

  18. Su, Y. H., Luo, H. G. & Xiang, T. Universal scaling behavior of the c-axis resistivity of high-temperature superconductors. Phys. Rev. B 73, 134510 (2006).

    Article  ADS  Google Scholar 

  19. Dai, Z. H., Zhang, Y. H., Senthil, T. & Lee, P. A. Pair-density waves, charge-density waves and vortices in high-T c cuprates. Phys. Rev. B 97, 174511 (2018).

    Article  ADS  Google Scholar 

  20. Celebrating 125 years of The Physical Review. https://journals.aps.org/125years (American Physical Society, 2018).

  21. Meng, J. Q. et al. Coexistence of Fermi arcs and Fermi pockets in a high-T c copper oxide superconductor. Nature 462, 335–338 (2009).

    Article  ADS  Google Scholar 

  22. Chen, X. J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

    Article  ADS  Google Scholar 

  23. Drozdov, I. K. et al. Phase diagram of Bi2Sr2CaCu2O8 + δ revisited. Nat. Commun. 9, 5210 (2018).

    Article  ADS  Google Scholar 

  24. Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178–1182 (2018).

    Article  Google Scholar 

  25. Deng, L. Z. et al. Higher superconducting transition temperature by breaking the universal pressure relation. Proc. Natl Acad. Sci. USA 116, 2004–2008 (2019).

    Article  ADS  Google Scholar 

  26. Zhang, H. M. et al. Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN (0001). Phys. Rev. Lett. 114, 107003 (2015).

    Article  ADS  Google Scholar 

  27. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  ADS  Google Scholar 

  28. Satto, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017).

    Article  ADS  Google Scholar 

  29. Boebinger, G. S. An abnormal normal state. Science 323, 590–591 (2009).

    Article  Google Scholar 

  30. Mao, W. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  ADS  Google Scholar 

  31. Li, Q., Hücker, M., Gu, G. D., Tsvelik, A. M. & Tranquada, J. M. Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett. 99, 067001 (2007).

    Article  ADS  Google Scholar 

  32. Gu, G. D., Takamuku, K., Koshizuka, N. & Tanaka, S. Large single crystal Bi-2212 along the c-axis prepared by floating zone method. J. Cryst. Growth 130, 325–329 (1993).

    Article  ADS  Google Scholar 

  33. Timofeev, Y. A., Struzhkin, V. V., Hemley, R. J., Mao, H.-K. & Gregoryanz, E. A. Improved techniques for measurement of superconductivity in diamond anvil cell by magnetic susceptibility. Rev. Sci. Instrum. 73, 371–377 (2002).

    Article  ADS  Google Scholar 

  34. Hamlin, J. J., Tissen, V. G. & Schilling, J. S. Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89 GPa. Phys. Rev. B 73, 094522 (2006).

    Article  ADS  Google Scholar 

  35. Sun, L. L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    Article  ADS  Google Scholar 

  36. Struzhkin, V. V., Hemley, R. J., Mao, H. K. & Timofeev, Y. A. Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–384 (1997).

    Article  ADS  Google Scholar 

  37. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Q.-K. Xue, X.-C. Ma, J. Wang, D.-H. Lee, H. Yao and Z. Weng for helpful discussions. This work in China was supported by the National Key Research and Development Program of China (grants 2017YFA0302900, 2016YFA0300300 and 2017YFA0303103), the NSF of China (grants 11427805, U1532267 and 11604376) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS, grant XDB25000000). J.G. is grateful for support from the Youth Innovation Promotion Association of CAS (2019008). The work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy, under contract no. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

L.S., T.X. and Q.W. designed the research. J.G., Y.Z., C.H., Y.S. and L.S. performed high-pressure resistance, magnetoresistance and a.c. susceptibility measurements. G.G. grew the single crystals. J.G., S.C., C.Y., G.L., K.Y. and A.L. carried out high-pressure X-ray diffraction measurements. L.S., Q.W., T.X., J.G. and Y.Z. wrote the paper. All authors analysed the data and discussed the results.

Corresponding author

Correspondence to Liling Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Derrick VanGennep, Maw-Kuen Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Supplementary Data 1

Source data of Fig. S1.

Supplementary Data 2

Source data of Fig. S2.

Supplementary Data 3

Source data of Fig. S3.

Supplementary Data 4

Source data of Fig. S4.

Supplementary Data 5

Source data of Fig. S5.

Source data

Source Data Fig. 1

The characterizations of the superconducting properties for the optimally doped Bi2Sr2CaCu2O8+5 superconductors under pressure.

Source Data Fig. 2

Rab, Rc and Δχ′ as a function of temperature for the optimally-doped Bi2Sr2CaCu2O8+5 superconductor.

Source Data Fig. 3

Analyzing results of the 2D superconducting properties for the optimally-doped Bi2Sr2CaCu2O8+5 superconductors.

Source Data Fig. 4

Pressure-TC phase diagram established by the results obtained from different experimental runs for the optimally-doped Bi2Sr2CaCu2O8+5 superconductor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhou, Y., Huang, C. et al. Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor. Nat. Phys. 16, 295–300 (2020). https://doi.org/10.1038/s41567-019-0740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0740-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing