Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sixfold enhancement of superconductivity in a tunable electronic nematic system

Abstract

The electronic nematic phase—in which electronic degrees of freedom lower the crystal rotational symmetry—is commonly observed in high-temperature superconductors. However, understanding the role of nematicity and nematic fluctuations in Cooper pairing is often made more complicated by the coexistence of other orders, particularly long-range magnetic order. Here we report the enhancement of superconductivity in a model electronic nematic system that is not magnetic, and show that the enhancement is directly born out of strong nematic fluctuations associated with a quantum phase transition. We present measurements of the resistance as a function of strain in Ba1−xSrxNi2As2 to show that strontium substitution promotes an electronically driven nematic order in this system. In addition, the complete suppression of that order to absolute zero temperature leads to an enhancement of the pairing strength, as evidenced by a sixfold increase in the superconducting transition temperature. The direct relation between enhanced pairing and nematic fluctuations in this model system, as well as the interplay with a unidirectional charge-density-wave order comparable to that found in the cuprates, offers a means to investigate the role of nematicity in strengthening superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of structural, charge and nematic orders in Ba1−xSrxNi2As2.
Fig. 2: Enhancement of superconducting transition temperature.
Fig. 3: Electronic nematic and charge orders in BaNi2As2.
Fig. 4: Nematic susceptibilities of Ba1−xSrxNi2As2 single crystals.

Similar content being viewed by others

Data availability

Source data for Figs. 14 are provided with the paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  2. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  3. Paglione, J. & Greene, R. High-temperature superconductivity in iron-based materials. Nat. Phys. 6, 645–658 (2010).

    Article  Google Scholar 

  4. Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    Article  ADS  Google Scholar 

  5. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011).

    Article  ADS  Google Scholar 

  6. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Article  Google Scholar 

  7. Kivelson, S., Fradkin, E. & Emery, V. Electronic liquid crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  8. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  9. Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. Metlitski, M. A., Mross, D. F., Sachdev, S. & Senthil, T. Cooper pairing in non-Fermi liquids. Phys. Rev. B 91, 115111 (2015).

    Article  ADS  Google Scholar 

  11. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Enhancement of superconductivity near a nematic quantum critical point. Phys. Rev. Lett. 114, 097001 (2015).

    Article  ADS  Google Scholar 

  12. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point. Proc. Natl Acad. Sci. USA 114, 4905–4910 (2017).

    Article  ADS  Google Scholar 

  13. Kang, J. & Fernandes, R. M. Superconductivity in FeSe thin films driven by the interplay between nematic fluctuations and spin–orbit coupling. Phys. Rev. Lett. 117, 217003 (2016).

    Article  ADS  Google Scholar 

  14. Klein, A., Wu, Y. & Chubukov, A.V. Multiple intertwined pairing states and temperature-sensitive gap anisotropy for superconductivity at a nematic quantum-critical point. npj Quantum Mater. 4, 55 (2019).

    Article  ADS  Google Scholar 

  15. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu2O2. Science 319, 597–600 (2008).

    Article  Google Scholar 

  16. Vojta, M. Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009).

    Article  ADS  Google Scholar 

  17. Sato, Y. et al. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu2O2. Nat. Phys. 13, 1074–1078 (2017).

    Article  Google Scholar 

  18. Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1−xS1−x superconductor. Proc. Natl Acad. Sci. USA 113, 8139–8143 (2016).

    Article  ADS  Google Scholar 

  19. Reiss, P. et al. Suppression of electronic correlations by chemical pressure from FeSe to FeS. Phys. Rev. B 96, 121103 (2017).

    Article  ADS  Google Scholar 

  20. Yamakawa, Y., Onari, S. & Kontani, H. Zigzag chain structure transition and orbital fluctuations in Ni-based superconductors. J. Phys. Soc. Jpn 82, 094704 (2013).

    Article  ADS  Google Scholar 

  21. Ronning, F. et al. The first order phase transition and superconductivity in BaNi2As2 single crystals. J. Phys. Condens. Matter 20, 342203 (2008).

    Article  Google Scholar 

  22. Sefat, A. S. et al. Structure and anisotropic properties of BaFe2−xNi2−xAs2−x (x = 0, 1, and 2) single crystals. Phys. Rev. B 79, 094508 (2009).

    Article  ADS  Google Scholar 

  23. Kothapalli, K., Ronning, F., Bauer, E. D., Schultz, A. J. & Nakotte, H. Single-crystal neutron diffraction studies on Ni-based metal-pnictide superconductor BaNi2As2. J. Phys. Conf. Ser. 251, 012010 (2010).

    Article  Google Scholar 

  24. Lee, S. et al. Unconventional charge density wave order in the pnictide superconductor Ba(Ni1−xCo1−x)1−xAs1−x. Phys. Rev. Lett. 122, 147601 (2019).

    Article  ADS  Google Scholar 

  25. Bauer, E. D., Ronning, F., Scott, B. L. & Thompson, J. D. Superconductivity in SrNi2As2 single crystals. Phys. Rev. B 78, 172504 (2008).

    Article  ADS  Google Scholar 

  26. Subedi, A. & Singh, D. J. Density functional study of BaNi2As2: electronic structure, phonons, and electron–phonon superconductivity. Phys. Rev. B 78, 132511 (2008).

    Article  ADS  Google Scholar 

  27. Kurita, N. et al. Low-temperature magnetothermal transport investigation of a Ni-based superconductor BaNi2As2: evidence for fully gapped superconductivity. Phys. Rev. Lett. 102, 147004 (2009).

    Article  ADS  Google Scholar 

  28. Kudo, K., Takasuga, M., Okamoto, Y., Hiroi, Z. & Nohara, M. Giant phonon softening and enhancement of superconductivity by phosphorus doping of BaNi2As2. Phys. Rev. Lett. 109, 097002 (2012).

    Article  ADS  Google Scholar 

  29. Kudo, K., Takasuga, M. & Nohara, M. Copper doping of BaNi2As2: giant phonon softening and superconductivity enhancement. Preprint at http://arXiv.org/abs/1704.04854 (2017).

  30. Eckberg, C. et al. Evolution of structure and superconductivity in Ba(Ni1−xCo1−x)1−xAs1−x. Phys. Rev. B 97, 224505 (2018).

    Article  ADS  Google Scholar 

  31. Cano, A., Civelli, M., Eremin, I. & Paul, I. Interplay of magnetic and structural transitions in iron-based pnictide superconductors. Phys. Rev. B 82, 020408 (2010).

    Article  ADS  Google Scholar 

  32. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).

    Article  ADS  Google Scholar 

  33. Fernandes, R. M., Böhmer, A. E., Meingast, C. & Schmalian, J. Scaling between magnetic and lattice fluctuations in iron pnictide superconductors. Phys. Rev. Lett. 111, 137001 (2013).

    Article  ADS  Google Scholar 

  34. Achkar, A. J. et al. Nematicity in stripe-ordered cuprates probed via resonant x-ray scattering. Science 351, 576–578 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  35. Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

    Article  ADS  Google Scholar 

  36. Johnston, D. C. Elaboration of the α-model derived from the BCS theory of superconductivity. Supercond. Sci. Technol. 26, 115011 (2013).

    Article  ADS  Google Scholar 

  37. Yonezawa, S., Higuchi, T., Sugimoto, Y., Sow, C. & Maeno, Y. Compact AC susceptometer for fast sample characterization down to 0.1 K. Rev. Sci. Instrum. 86, 093903 (2015).

    Article  ADS  Google Scholar 

  38. Shapiro, M. C., Hristov, A. T., Palmstrom, J. C., Chu, J.-H. & Fisher, I. R. Measurement of the B 1g and B 2g components of the elastoresistivity tensor for tetragonal materials via transverse resistivity configurations. Rev. Sci. Instrum. 87, 063902 (2016).

    Article  ADS  Google Scholar 

  39. Shapiro, M. C., Hlobil, P., Hristov, A. T., Maharaj, A. V. & Fisher, I. R. Symmetry constraints on the elastoresistivity tensor. Phys. Rev. B 92, 235147 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research at the University of Maryland was supported by the AFOSR Grant No. FA9550-14-10332, the National Science Foundation Grant No. DMR1905891, and the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant No. GBMF4419. We also acknowledge support from the Maryland Quantum Materials Center as well as the Maryland Nanocenter and its FabLab. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. Theory work (R.M.F. and M.H.C.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC0012336. X-ray experiments at UIUC were supported by DOE grant DE-FG02-06ER46285. P.A. acknowledges support from the Gordon and Betty Moore Foundation’s EPiQS initiative through grant GBMF4542.

Author information

Authors and Affiliations

Authors

Contributions

C.E. and J.P. conceived and designed the experiments. C.E., D.J.C., T.M., H.H. and T.D. synthesized crystals and performed basic physical characterization. C.E. performed elastoresistivity measurements. J.C., S.L. and P.A. performed and analysed low-temperature X-ray characterization of the CDW phase. P.Z. performed and analysed 250 K single-crystal X-ray diffraction. J.L. performed preliminary neutron diffraction studies. M.H.C. and R.M.F. developed the phenomenological model describing the evolution of nematicity in this system. C.E., J.P., R.M.F. and M.H.C. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Chris Eckberg or Johnpierre Paglione.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Dimitri Basov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional theoretical discussion and experimental data, Supplementary Figs. 1–12 and refs. 1–3.

Source data

Source data Fig 1

Source data for Figure 1

Source data Fig 2

Source data for Figure 2

Source data Fig 3

Source data for Figure 3

Source data Fig 4

Source data for Figure 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckberg, C., Campbell, D.J., Metz, T. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2020). https://doi.org/10.1038/s41567-019-0736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0736-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing