Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum control of an oscillator using a stimulated Josephson nonlinearity


Superconducting circuits extensively rely on the Josephson junction as a nonlinear electronic element for manipulating quantum information and mediating photon interactions. Despite continuing efforts in pushing the coherence of Josephson circuits, the best photon lifetimes have been demonstrated in microwave cavities. Nevertheless, architectures based on quantum memories require a qubit element for logical operations at the cost of introducing additional loss channels and limiting process fidelities. Here, we directly operate the oscillator as an isolated two-level system by tailoring its Hilbert space. Implementing a flux-tunable inductive coupling between two resonators, we can selectively Rabi drive the lowest eigenstates by dynamically activating a three-wave interaction through parametric flux modulation. Measuring the Wigner function confirms that we can prepare arbitrary states confined in the single-photon manifold, with measured coherence times limited by the oscillator intrinsic quality factor. This architectural shift in engineering oscillators with stimulated nonlinearity can be exploited for designing long-lived quantum modules and offers flexibility in studying non-equilibrium physics with photons in a field-programmable simulator.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device description and spectroscopy.
Fig. 2: Dynamical three-wave interaction.
Fig. 3: Time-domain spectroscopy.
Fig. 4: Wigner tomography.
Fig. 5: Oscillator coherence.

Data availability

The data represented in Fig. 3b are available as source data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS  Google Scholar 

  2. 2.

    Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y. & Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 718/719, 1–102 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  3. 3.

    Wendin, G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017).

    ADS  MathSciNet  Google Scholar 

  4. 4.

    Clarke, J., Cleland, A. N., Devoret, M. H., Esteve, D. & Martinis, J. M. Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988).

    ADS  Google Scholar 

  5. 5.

    Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    ADS  Google Scholar 

  6. 6.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  Google Scholar 

  7. 7.

    Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014).

    ADS  Google Scholar 

  8. 8.

    Naik, R. K. et al. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8, 1904 (2017).

    ADS  Google Scholar 

  9. 9.

    Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015).

    ADS  Google Scholar 

  10. 10.

    Touzard, S. et al. Coherent oscillations inside a quantum manifold stabilized by dissipation. Phys. Rev. X 8, 021005 (2018).

    Google Scholar 

  11. 11.

    Bretheau, L., Campagne-Ibarcq, P., Flurin, E., Mallet, F. & Huard, B. Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776–779 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  12. 12.

    Bertet, P., Harmans, C. J. P. M. & Mooij, J. E. Parametric coupling for superconducting qubits. Phys. Rev. B 73, 064512 (2006).

    ADS  Google Scholar 

  13. 13.

    Niskanen, A. O. Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007).

    ADS  Google Scholar 

  14. 14.

    McKay, D. C. et al. Universal gate for fixed-frequency qubits via a tunable bus. Phys. Rev. Appl. 6, 064007 (2016).

    ADS  Google Scholar 

  15. 15.

    Reagor, M. et al. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv. 4, eaao3603 (2018).

    ADS  Google Scholar 

  16. 16.

    Zakka-Bajjani, E. et al. Quantum superposition of a single microwave photon in two different ‘colour’ states. Nat. Phys. 7, 599–603 (2011).

    Google Scholar 

  17. 17.

    Lu, Y. et al. Universal stabilization of a parametrically coupled qubit. Phys. Rev. Lett. 119, 150502 (2017).

    ADS  Google Scholar 

  18. 18.

    Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    ADS  Google Scholar 

  19. 19.

    Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).

    Google Scholar 

  20. 20.

    Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    ADS  Google Scholar 

  21. 21.

    Lecocq, F. et al. Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).

    ADS  Google Scholar 

  22. 22.

    Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Google Scholar 

  23. 23.

    Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nat. Phys. 5, 105–109 (2009).

    Google Scholar 

  24. 24.

    Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006).

    Google Scholar 

  25. 25.

    Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    Google Scholar 

  26. 26.

    Angelakis, D. G., Santos, M. F. & Sougato, B. Photon-blockade induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007).

    ADS  Google Scholar 

  27. 27.

    Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    ADS  Google Scholar 

  28. 28.

    Hartmann, M. J. Polariton crystallization in driven arrays of lossy nonlinear resonators. Phys. Rev. Lett. 104, 113601 (2010).

    ADS  Google Scholar 

  29. 29.

    Houck, A. A., Tureci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

    Google Scholar 

  30. 30.

    Schmidt, S. & Koch, J. Circuit QED lattices: towards quantum simulation with superconducting circuits. Ann. Phys. (Berl.) 525, 395–412 (2013).

    ADS  Google Scholar 

  31. 31.

    Raftery, J., Sadri, D., Schmidt, S., Türeci, H. E. & Houck, A. A. Observation of a dissipation-induced classical to quantum transition. Phys. Rev. X 4, 031043 (2014).

    Google Scholar 

  32. 32.

    Fitzpatrick, M., Sundaresan, N. M., Li, A. C. Y., Koch, J. & Houck, A. A. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X 7, 011016 (2017).

    Google Scholar 

  33. 33.

    Jin, J., Rossini, D., Fazio, R., Leib, M. & Hartmann, M. J. Photon solid phases in driven arrays of nonlinearly coupled cavities. Phys. Rev. Lett. 110, 163605 (2013).

    ADS  Google Scholar 

  34. 34.

    Peropadre, B. et al. Tunable coupling engineering between superconducting resonators: from sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013).

    ADS  Google Scholar 

  35. 35.

    Kounalakis, M., Dickel, C., Bruno, A., Langford, N. K. & Steele, G. A. Tuneable hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting circuit. npj Quantum Inf. 4, 38 (2018).

    ADS  Google Scholar 

  36. 36.

    Collodo, M. C. et al. Observation of the crossover from photon ordering to delocalization in tunably coupled resonators. Phys. Rev. Lett. 122, 183601 (2019).

    ADS  Google Scholar 

  37. 37.

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    ADS  Google Scholar 

  38. 38.

    Frattini, N. E. et al. 3-wave mixing Josephson dipole element. Appl. Rev. Lett. 110, 222603 (2017).

    ADS  Google Scholar 

  39. 39.

    Vool, U. et al. Driving forbidden transitions in the fluxonium artificial atom. Phys. Rev. Appl. 9, 054046 (2018).

    ADS  Google Scholar 

  40. 40.

    Markovic, D. et al. Demonstration of an effective ultrastrong coupling between two oscillators. Phys. Rev. Lett. 121, 040505 (2018).

    ADS  Google Scholar 

  41. 41.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  42. 42.

    Holland, E. T. et al. Single-photon-resolved cross-Kerr interaction for autonomous stabilization of photon-number states. Phys. Rev. Lett. 115, 180501 (2015).

    ADS  Google Scholar 

  43. 43.

    Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    ADS  Google Scholar 

  44. 44.

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    ADS  Google Scholar 

  45. 45.

    Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013).

    ADS  Google Scholar 

  46. 46.

    Shalibo, Y. et al. Direct Wigner tomography of a superconducting anharmonic oscillator. Phys. Rev. Lett. 110, 100404 (2013).

    ADS  Google Scholar 

  47. 47.

    Wenner, J. et al. Surface loss simulations of superconducting coplanar waveguide resonators. Appl. Rev. Lett. 99, 113513 (2011).

    ADS  Google Scholar 

  48. 48.

    Wang, C. et al. Surface participation and dielectric loss in superconducting qubits. Appl. Rev. Lett. 107, 162601 (2015).

    ADS  Google Scholar 

  49. 49.

    Reagor, M. et al. Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Rev. Lett. 102, 192604 (2013).

    ADS  Google Scholar 

  50. 50.

    Romanenko, A. et al. Three-dimensional superconducting resonators at T < 20 mK with the photon lifetime up to τ = 2 seconds. Preprint at (2018).

Download references


We thank M. Mirrahimi and J. A. Aumentado for valuable discussions, G. Zhang and P. Mundada for technical contributions and MIT Lincoln Labs for providing a travelling-wave parametric amplifier for this experiment. This work was supported by the Army Research Office through grant no. W911NF-15-1-0421.

Author information




A.V. designed the device, performed the experiments and analysed the data. Z.H., P.G. and J.K. provided theoretical support. A.A.H. supervised the whole experiment. All authors contributed to the preparation of this manuscript.

Corresponding authors

Correspondence to Andrei Vrajitoarea or Andrew A. Houck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Gerhard Kirchmair, Anton Kockum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information.

Source data

Source Data Fig. 3

Source data for Fig. 3b (experimental)

Source Data Fig. 3

Source data for Fig. 3b (theory)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vrajitoarea, A., Huang, Z., Groszkowski, P. et al. Quantum control of an oscillator using a stimulated Josephson nonlinearity. Nat. Phys. 16, 211–217 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing