Thermodynamic uncertainty relations constrain non-equilibrium fluctuations

An Author Correction to this article was published on 09 March 2020

This article has been updated

Abstract

In equilibrium thermodynamics, there exists a well-established connection between dynamical fluctuations of a physical system and the dissipation of its energy into an environment. However, few similarly quantitative tools are available for the description of physical systems out of equilibrium. Here, we offer our perspective on the recent development of a new class of inequalities known as thermodynamic uncertainty relations, which have revealed that dissipation constrains current fluctuations in steady states arbitrarily far from equilibrium. We discuss the stochastic thermodynamic origin of these inequalities, and highlight recent efforts to expand their applicability, which have focused on connections between current fluctuations and the fluctuation theorems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Thermodynamic constraints on fluctuations in particle currents.

Change history

  • 09 March 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Van den Broeck, C. & Esposito, M. Ensemble and trajectory thermodynamics: a brief introduction. Physica A 418, 6–16 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Jarzynski, C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Ann. Rev. Condens. Matter Phys. 2, 329–351 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Gingrich, T. R., Horowitz, J. M., Perunov, N. & England, J. L. Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116, 120601 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Touchette, H. & Harris, R. J. in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (eds Klages, R. et al.) 335–360 (Wiley-VCH, 2013).

  7. 7.

    Pietzonka, P., Ritort, F. & Seifert, U. Finite-time generalization of the thermodynamic uncertainty relation. Phys. Rev. E 96, 012101 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Pietzonka, P. & Seifert, U. Universal trade-off between power, efficiency, and constancy in steady-state heat engines. Phys. Rev. Lett. 120, 190602 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Gingrich, T. R., Rotskoff, G. M. & Horowitz, J. M. Inferring dissipation from current fluctuations. J. Phys. A 50, 184004 (2017).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Horowitz, J. M. & Gingrich, T. R. Proof of the finite-time thermodynamic uncertainty relation for steady-state currents. Phys. Rev. E 96, 020103 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Yan, J. Achievability of thermodynamic uncertainty relations. Preprint at https://arxiv.org/abs/1905.00929 (2019).

  12. 12.

    Polettini, M., Lazarescu, A. & Esposito, M. Tightening the uncertainty principle for stochastic currents. Phys. Rev. E 94, 052104 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Nardini, C. & Touchette, H. Process interpretation of current entropic bounds. Eur. Phys. J. B 91, 16 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Dechant, A. & Sasa, S.-I. Current fluctuations and transport efficiency for general langevin systems. J. Stat. Mech. Theor. Exp. 2018, 063209 (2018).

    MathSciNet  Article  Google Scholar 

  15. 15.

    Dechant, A. & Sasa, S.-I. Fluctuation-response inequality out of equilibrium. Preprint at https://arxiv.org/abs/1804.08250 (2018).

  16. 16.

    Dechant, A. Multidimensional thermodynamic uncertainty relations. J. Phys. A 52 (2018).

  17. 17.

    Hasegawa, Y. & Van, Vu,T. Uncertainty relations in stochastic processes: an information inequality approach. Phys. Rev. E 99, 062126 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Pigolotti, S., Neri, I., Roldán, E. & Jülicher, F. Generic properties of stochastic entropy production. Phys. Rev. Lett. 119, 140604 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Pietzonka, P., Barato, A. C. & Seifert, U. Universal bounds on current fluctuations. Phys. Rev. E 93, 052145 (2016).

    ADS  MATH  Article  Google Scholar 

  20. 20.

    Chiuchiù, C. & Pigolotti, S. Mapping of uncertainty relations between continuous and discrete time. Phys. Rev. E 97, 032109 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Di Terlizzi, I. & Baiesi, M. Kinetic uncertainty relation. J. Phys. A 52, 02LT03 (2018).

    MATH  Article  Google Scholar 

  22. 22.

    Shiraishi, N. Finite-time thermodynamic uncertainty relation do not hold for discrete-time Markov process. Preprint at https://arxiv.org/abs/1706.00892 (2017).

  23. 23.

    Proesmans, K. & Van den Broeck, C. Discrete-time thermodynamic uncertainty relation. Europhys. Lett. 119, 20001 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Falasco, G., Pfaller, R., Bregulla, A. P. & Kroy, K. Exact symmetries in the velocity fluctuations of a hot Brownian swimmer. Phys. Rev. E 94, 030620(R) (2016).

    Article  Google Scholar 

  25. 25.

    Hyeon, C. & Hwang, W. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials. Phys. Rev. E 96, 012156 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Barato, A. C. & Seifert, U. Coherence of biochemical oscillations is bounded by driving force and network topology. Phys. Rev. E 95, 062409 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Proesmans, K., Peliti, L. & Lacoste, D. in Chemical Kinetics: Beyond the Textbook (eds Lindenberg, K. et al.) Ch. 17 (World Scientific, 2019).

  28. 28.

    Wierenga, H., ten Wolde, P. R. & Beck, N. B. Quantifying fluctuations in reversible enzymatic cycles and clocks. Phys. Rev. E 97, 042404 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Marsland, R., Cui, W. & Horowitz, J. M. The thermodynamic uncertainty relation in biochemcial oscillations. J. R. Soc. Interface 16, (2019).

  30. 30.

    Brown, A. I. & Sivak, D. A. Pulling cargo increases the precision of molecular motor progress. Europhy. Lett. 126, 40004 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Shankar, S. & Marchetti, M. C. Hidden entropy production and work fluctuations in an ideal active gas. Phys. Rev. E 98, 020604(R) (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Lee, S., Hyeon, C. & Jo, J. Thermodynamic uncertainty relation of interacting oscillators in synchrony. Phys. Rev. E 98, 032119 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Li, J., Horowitz, J. M., Gingrich, T. R. & Fakhri, N. Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Pietzonka, P., Barato, A. C. & Seifert, U. Universal bound on the efficiency of molecular motors. J. Stat. Mech. Theor. Exp. 2016, 124004 (2016).

    MATH  Article  Google Scholar 

  35. 35.

    Seifert, U. Stochastic thermodynamics: from principles to the cost of precision. Physica A 504, 176–191 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Barato, A. C. & Seifert, U. Cost and precision of Brownian clocks. Phys. Rev. X 6, 041053 (2016).

    Google Scholar 

  37. 37.

    Ptaszynński, K. Coherence-enhanced constancy of a quantum thermoelectric generator. Phys. Rev. B 98, 085425 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Agarwalla, B. K. & Segal, D. Assessing the validity of the thermodynamic uncertainty relation in quantum systems. Phys. Rev. B 98, 155438 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Liu, J. & Segal, D. Thermodynamic uncertainty relation in quantum thermoelectric junctions. Phys. Rev. E 99, 062141 (2019).

    ADS  Article  Google Scholar 

  40. 40.

    Brandner, K., Hanazato, T. & Saito, K. Thermodynamic bounds on precision in ballistic multiterminal transport. Phys. Rev. Lett. 120, 090601 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Macieszczak, K., Brandner, K. & Garrahan, J. P. Unified thermodynamic uncertainty relations in linear response. Phys. Rev. Lett. 121, 130601 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Fischer, L. P., Pietzonka, P. & Seifert, U. Large deviation function for a driven underdamped particle in a periodic potential. Phys. Rev. E 97, 022143 (2018).

    ADS  Article  Google Scholar 

  43. 43.

    Chun, H.-M., Fischer, L. P. & Seifert, U. Effect of a magnetic field on the thermodynamic uncertainty relation. Phys. Rev. E 99, 042128 (2019).

    ADS  Article  Google Scholar 

  44. 44.

    Hasegawa, Y. & Van Vu, T. Fluctuation theorem uncertainty relation. Phys. Rev. Lett. 123, 110602 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    Timpanaro, A. M., Guarnieri, G., Goold, J. & Landi, G. T. Thermodynamic uncertainty relations from exchange fluctuation theorems. Phys. Rev. Lett. 123, 090604 (2019).

    ADS  Article  Google Scholar 

  46. 46.

    Seifert, U. From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10, 171–192 (2019).

    ADS  Article  Google Scholar 

  47. 47.

    Proesmans, K. & Horowitz, J. M. Hysteretic thermodynamic uncertainty relation for systems with broken time-reversal symmetry. J. Stat. Mech. Theor. Exp. 2019, 054005 (2019).

    MathSciNet  Article  Google Scholar 

  48. 48.

    Potts, P. P. & Samuelsson, P. Thermodynamic uncertainty relations including measurement and feedback. Preprint at https://arxiv.org/abs/1904.04913 (2019).

  49. 49.

    Garrahan, J. P. Simple bounds on fluctuations and uncertainty relations for first-passage times of counting observables. Phys. Rev. E 95, 032134 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Gingrich, T. R. & Horowitz, J. M. Fundamental bounds on first passage time fluctuations for currents. Phys. Rev. Lett. 119, 170601 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  51. 51.

    Guioth, J. & Lacoste, D. Thermodynamic bounds on equilibrium fluctuations of a global or local order parameter. Europhys. Lett. 115, 60007 (2016).

    ADS  Article  Google Scholar 

  52. 52.

    Barato, A. C., Chetrite, R., Faggionato, A. & Gabrielli, D. Bounds on current fluctuations in periodically driven systems. New J. Phys. 20, 103023 (2018).

    Article  Google Scholar 

  53. 53.

    Barato, A. C., Chetrite, R., Faggionato, A. & Gabrielli, D. A unifying picture of generalized thermodynamic uncertainty relations. J. Stat. Mech. Theor. Exp. 2019, 084017 (2019).

    MathSciNet  Article  Google Scholar 

  54. 54.

    Koyuk, T., Seifert, U. & Pietzonka, P. A generalization of the thermodynamic uncertainty relation to periodically driven systems. J. Phys. A 52, 02LT02 (2018).

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Pietzonka, P., Barato, A. C. & Seifert, U. Affinity-and topology-dependent bound on current fluctuations. J. Phys. A 49, 34LT01 (2016).

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Koyuk, T. & Seifert, U. Operationally accessible bounds on fluctuations and entropy production in periodically driven systems. Phys. Rev. Lett. 122, 230601 (2019).

    ADS  Article  Google Scholar 

  57. 57.

    Owen, J. A., Gingrich, T. R. & Horowitz, J. M. Universal thermodynamic bounds on nonequilibrium response with biochemical applications. Preprint at https://arxiv.org/abs/1905.07449 (2019).

Download references

Acknowledgements

We gratefully acknowledge our collaborators on this work, J. England, N. Perunov, G. M. Rostkoff, K. Proesmans, H. Vroylandt, J. Li, N. Fakhri, R. Marsland III and W. Cui.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jordan M. Horowitz or Todd R. Gingrich.

Additional information

Peer review information Nature Physics thanks Shin-ichi Sasa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horowitz, J.M., Gingrich, T.R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 16, 15–20 (2020). https://doi.org/10.1038/s41567-019-0702-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing