Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging emergent heavy Dirac fermions of a topological Kondo insulator

An Author Correction to this article was published on 04 November 2020

This article has been updated


The interplay between strong electron interactions and band topology is a new frontier in the search for exotic quantum phases. The Kondo insulator SmB6 has emerged as a promising platform because its correlation-driven bulk gap is predicted to host topological surface modes entangled with f electrons, spawning heavy Dirac fermions1,2,3,4. Unlike the conventional surface states of non-interacting topological insulators, heavy Dirac fermions are expected to harbour spontaneously generated quantum anomalous Hall states5, non-Abelian quantum statistics6,7, fractionalization8 and topological order6,7,8. However, the small energy scales required to probe heavy Dirac fermions have complicated their experimental realization. Here we use high-energy-resolution spectroscopic imaging in real and momentum space on SmB6. On cooling below 35 K, we observe the opening of an insulating gap that expands to 14 meV at 2 K. Within the gap, we image the formation of linearly dispersing surface states with effective masses reaching 410 ± 20 me (where me is the mass of the electron). Our results demonstrate the presence of correlation-driven heavy surface states in SmB6, in agreement with theoretical predictions1,2,3,4. Their high effective mass translates to a large density of states near zero energy, which magnifies their susceptibility to the anticipated novel orders and their potential utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anticipated topological Kondo insulator electronic structure of SmB6.
Fig. 2: Imaging QPI on the (2 × 1) surface of SmB6.
Fig. 3: Raw QPI reveals heavy Dirac surface states.
Fig. 4: Concomitant evolution of Dirac states and the KI gap.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding author on reasonable request.

Change history

  • 04 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  ADS  Google Scholar 

  2. Alexandrov, V., Dzero, M. & Coleman, P. Cubic topological Kondo insulators. Phys. Rev. Lett. 111, 226403 (2013).

    Article  ADS  Google Scholar 

  3. Takimoto, T. SmB6: a promising candidate for a topological insulator. J. Phys. Soc. Jpn 80, 123710 (2011).

    Article  ADS  Google Scholar 

  4. Lu, F., Zhao, J., Weng, H., Fang, Z. & Dai, X. Correlated topological insulators with mixed valence. Phys. Rev. Lett. 110, 096401 (2013).

    Article  ADS  Google Scholar 

  5. Efimkin, D. K. & Galitski, V. Strongly interacting Dirac liquid on the surface of a topological Kondo insulator. Phys. Rev. B 90, 081113 (2014).

    Article  ADS  Google Scholar 

  6. Wang, C., Potter, A. C. & Senthil, T. Gapped symmetry preserving surface state for the electron topological insulator. Phys. Rev. B 88, 115137 (2013).

    Article  ADS  Google Scholar 

  7. Chen, X., Fidkowski, L. & Vishwanath, A. Symmetry enforced non-Abelian topological order at the surface of a topological insulator. Phys. Rev. B 89, 165132 (2014).

    Article  ADS  Google Scholar 

  8. Thomson, A. & Sachdev, S. Fractionalized Fermi liquid on the surface of a topological Kondo insulator. Phys. Rev. B 93, 125103 (2016).

    Article  ADS  Google Scholar 

  9. Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).

    Article  ADS  Google Scholar 

  10. Allen, J. W., Batlogg, B. & Wachter, P. Large low-temperature Hall effect and resistivity in mixed-valent SmB6. Phys. Rev. B 20, 4807–4813 (1979).

    Article  ADS  Google Scholar 

  11. Kim, D. J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).

    Article  ADS  Google Scholar 

  12. Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6. Phys. Rev. X 3, 011011 (2013).

    Google Scholar 

  13. Syers, P., Kim, D., Fuhrer, M. S. & Paglione, J. Tuning bulk and surface conduction in the proposed topological Kondo insulator SmB6. Phys. Rev. Lett. 114, 096601 (2015).

    Article  ADS  Google Scholar 

  14. Luo, Y., Chen, H., Dai, J., Xu, Z.-A. & Thompson, J. D. Heavy surface state in a possible topological Kondo insulator: magnetothermoelectric transport on the (011) plane of SmB6. Phys. Rev. B 91, 075130 (2015).

    Article  ADS  Google Scholar 

  15. Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    Article  ADS  Google Scholar 

  16. Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    Article  ADS  Google Scholar 

  17. Xu, N. et al. Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES. Phys. Rev. B 90, 085148 (2014).

    Article  ADS  Google Scholar 

  18. Jiang, J. et al. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun. 4, 3010 (2013).

    Article  ADS  Google Scholar 

  19. Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun. 4, 2991 (2013).

    Article  ADS  Google Scholar 

  20. Gorshunov, B. et al. Low-energy electrodynamics of SmB6. Phys. Rev. B 59, 1808–1814 (1999).

    Article  ADS  Google Scholar 

  21. Frantzeskakis, E. et al. Kondo Hybridization and the origin of metallic states at the (001) surface of SmB6. Phys. Rev. X 3, 041024 (2013).

    Google Scholar 

  22. Hlawenka, P. et al. Samarium hexaboride is a trivial surface conductor. Nat. Commun. 9, 517 (2018).

    Article  ADS  Google Scholar 

  23. Matt, C. E. et al. Consistency between ARPES and STM measurements on SmB6. Preprint at (2018).

  24. Ruan, W. et al. Emergence of a coherent in-gap state in the SmB6 Kondo insulator revealed by scanning tunneling spectroscopy. Phys. Rev. Lett. 112, 136401 (2014).

    Article  ADS  Google Scholar 

  25. Rößler, S. et al. Hybridization gap and Fano resonance in SmB6. Proc. Natl Acad. Sci. USA 111, 4798–4802 (2014).

    Article  ADS  Google Scholar 

  26. Zhu, Z.-H. et al. Polarity-driven surface metallicity in SmB6. Phys. Rev. Lett. 111, 216402 (2013).

    Article  ADS  Google Scholar 

  27. Stroscio, J. A., Feenstra, R. M. & Fein, A. P. Electronic structure of the Si(111)2 × 1 surface by scanning-tunneling microscopy. Phys. Rev. Lett. 57, 2579–2582 (1986).

    Article  ADS  Google Scholar 

  28. Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2. Nature 465, 570–576 (2010).

    Article  ADS  Google Scholar 

  29. Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    Article  ADS  Google Scholar 

  30. Allan, M. P. et al. Imaging cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9, 468–473 (2013).

    Article  Google Scholar 

  31. Jiao, L. et al. Additional energy scale in SmB6 at low-temperature. Nat. Commun. 7, 13762 (2016).

    Article  ADS  Google Scholar 

  32. Guo, H.-M. & Franz, M. Theory of quasiparticle interference on the surface of a strong topological insulator. Phys. Rev. B 81, 041102 (2010).

    Article  ADS  Google Scholar 

  33. Nyberg, R. H., Rossi, E. & Morr, D. K. Identifying collective modes through impurity pinning in cuprate superconductors. Phys. Rev. B 78, 054504 (2008).

    Article  ADS  Google Scholar 

  34. Baum, Y. & Stern, A. Magnetic instability on the surface of topological insulators. Phys. Rev. B 85, 121105 (2012).

    Article  ADS  Google Scholar 

  35. Nakajima, Y., Syers, P., Wang, X., Wang, R. & Paglione, J. One-dimensional edge state transport in a topological Kondo insulator. Nat. Phys. 12, 213–217 (2015).

    Article  Google Scholar 

  36. Figgins, J. & Morr, D. K. Defects in heavy-fermion materials: unveiling strong correlations in real space. Phys. Rev. Lett. 107, 066401 (2011).

    Article  ADS  Google Scholar 

  37. Okada, Y. et al. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett. 106, 206805 (2011).

    Article  ADS  Google Scholar 

  38. Maltseva, M., Dzero, M. & Coleman, P. Electron cotunneling into a Kondo lattice. Phys. Rev. Lett. 103, 206402 (2009).

    Article  ADS  Google Scholar 

  39. Figgins, J. & Morr, D. K. Differential conductance and quantum interference in Kondo systems. Phys. Rev. Lett. 104, 187202 (2010).

    Article  ADS  Google Scholar 

  40. Akintola, K. et al. Quantum spin fluctuations in the bulk insulating state of pure and Fe-doped SmB6. Phys. Rev. B 95, 245107 (2017).

    Article  ADS  Google Scholar 

  41. Kim, D. J. et al. Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction. Sci. Rep. 3, 3150 (2013).

    Article  Google Scholar 

Download references


The work at Harvard was supported by the US National Science Foundation under grant nos. DMR-1106023 and DMR-1410480. The work at UC Irvine was supported by US National Science Foundation under grant no. 1708199. D.K.M. acknowledges support by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-FG02-05ER46225. Work at Los Alamos was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Work at the University of Maryland was funded by AFOSR grant no. FA9550-14-1-0332 and by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF4419.

Author information

Authors and Affiliations



H.P., Y.L., A.S., P.C., Y.H. and M.M.Y. performed the STM experiments. X.W., J.P., P.F.S.R., D.J.-K. and Z.F. synthesized and characterized the samples. P.F.S.R. performed X-ray measurements. J.D.T. performed magnetic susceptibility measurements. H.P., A.S., Y.H., M.M.Y., M.H.H. and J.E.H. developed and carried out analyses. D.K.M. provided theoretical guidance. M.H.H. and J.E.H. supervised the project. H.P. and M.H.H. wrote the paper with key contributions from D.K.M. and J.E.H. The manuscript reflects the contributions and ideas of all authors.

Corresponding authors

Correspondence to M. H. Hamidian or Jennifer E. Hoffman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Tables 1 and 2, text and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirie, H., Liu, Y., Soumyanarayanan, A. et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 16, 52–56 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing