Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light-induced anomalous Hall effect in graphene

Abstract

Many non-equilibrium phenomena have been discovered or predicted in optically driven quantum solids1. Examples include light-induced superconductivity2,3 and Floquet-engineered topological phases4,5,6,7,8. These are short-lived effects that should lead to measurable changes in electrical transport, which can be characterized using an ultrafast device architecture based on photoconductive switches9. Here, we report the observation of a light-induced anomalous Hall effect in monolayer graphene driven by a femtosecond pulse of circularly polarized light. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect a Floquet-engineered topological band structure4,5, similar to the band structure originally proposed by Haldane10. This includes an approximately 60 meV wide conductance plateau centred at the Dirac point, where a gap of equal magnitude is predicted to open. We find that when the Fermi level lies within this plateau the estimated anomalous Hall conductance saturates around 1.8 ± 0.4 e2/h.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-induced topological Floquet bands in graphene and device architecture used to detect ultrafast anomalous Hall currents.
Fig. 2: Ultrafast anomalous Hall currents in graphene driven by circularly polarized light.
Fig. 3: Helicity-dependent current behaviour under different source–drain voltage geometries.
Fig. 4: Evidence for topological Floquet bands.

Similar content being viewed by others

Data availability

The data represented in Figs. 2–4 are available with the online version of this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  ADS  Google Scholar 

  2. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  3. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  Google Scholar 

  4. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).

    Article  ADS  Google Scholar 

  5. Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).

    Article  ADS  Google Scholar 

  6. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  7. Sie, E. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article  ADS  Google Scholar 

  8. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015). 2.

    Article  ADS  Google Scholar 

  9. Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975).

    Article  ADS  Google Scholar 

  10. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  12. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  13. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  14. Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton University Press, 2013).

  15. Foa Torres, L. E. F., Perez-Piskunow, P. M., Balseiro, C. A. & Usaj, G. Multiterminal conductance of a Floquet topological insulator. Phys. Rev. Lett. 113, 266801 (2014).

    Article  ADS  Google Scholar 

  16. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 176–170 (2013).

    ADS  Google Scholar 

  17. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  18. Rechtsman, M. C. et al. Photonic Floquet topological insulator. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  19. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  20. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  ADS  Google Scholar 

  21. Yin, C. M. et al. Observation of the photoinduced anomalous Hall effect in GaN-based heterostructures. Appl. Phys. Lett. 98, 122104 (2011).

    Article  ADS  Google Scholar 

  22. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  23. Seifert, P. et al. In-plane anisotropy of the photon-helicity induced linear Hall effect in few-layer WTe2. Phys. Rev. B. 99, 161403(R) (2019).

    Article  ADS  Google Scholar 

  24. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  25. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  26. Glazov, M. M. & Ganichev, S. D. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101–138 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  27. Sato, S. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 (2019).

    Article  ADS  Google Scholar 

  28. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  29. Usaj, G., Perez-Piskunow, P. M., Foa Torres, L. E. F. & Balseiro, C. A. Irradiated graphene as a tunable Floquet topological insulator. Phys. Rev. B 90, 115423 (2014).

    Article  ADS  Google Scholar 

  30. Mikami, T. et al. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: application to Floquet topological insulators. Phys. Rev. B 93, 144307 (2016).

    Article  ADS  Google Scholar 

  31. Dehghani, H., Oka, T. & Mitra, A. Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator. Phys. Rev. B 91, 155422 (2015).

    Article  ADS  Google Scholar 

  32. Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump–probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article  ADS  Google Scholar 

  33. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge H. Aoki, L. Mathey, M. Nuske, A. Rubio, S.A. Sato, M.A. Sentef and P. Tang for fruitful discussions and B. Fiedler, B. Höhling, E. König and M. Volkmann for technical support. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 319286 (QMAC). J.W.M. received funding from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.W.M. conceived the experiment together with A.C. A.C. and G.M. supervised the project. J.W.M. and F.-U.S. designed and built the experimental setup. J.W.M., F.-U.S., B.S., T.M. and G.M. developed the on-chip circuitry. B.S. fabricated the graphene devices. B.S., J.W.M. and F.-U.S. performed the measurements. B.S. and J.W.M. analysed the data with support from T.M., G.J. and G.M. Custom measurement electronics and circuit simulations were provided by T.M. and G.M. Floquet calculations were performed by G.J. The manuscript was written by J.W.M., G.J. and A.C. with contributions from all other authors.

Corresponding authors

Correspondence to J. W. McIver or A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional methodological details, Supplementary Figs. 1–20 and refs. 34–50.

Source data

Source data for Fig. 2

Source data for Fig. 2.

Source data for Fig. 3

Source data for Fig. 3.

Source data for Fig. 4

Source data for Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIver, J.W., Schulte, B., Stein, FU. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020). https://doi.org/10.1038/s41567-019-0698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0698-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing