Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of a ferro-rotational order coupled with second-order nonlinear optical fields


Ferroic orders can be classified by the symmetry of their order parameters, and ferroelectric, ferromagnetic and ferro-toroidal orders have already been observed. The ferro-rotational order1,2,3, whose order parameter is an axial vector invariant under both time-reversal and spatial-inversion operations, is the final ferroic to be identified and has a vector order parameter. This order is closely related to a number of phenomena such as polar vortices4, giant magnetoelectric coupling5 and spin-helicity-driven ferroelectricity6, but it has received little attention so far. Here, using high-sensitivity rotational-anisotropy second-harmonic generation, we have exploited the electric quadrupole contribution to the second-harmonic generation to directly couple to this centrosymmetric ferro-rotational order in an archetype of type-II multiferroics, RbFe(MoO4)2. We found that two domain states with opposite ferro-rotational vectors emerge with distinct populations at the critical temperature Tc ≈ 195 K and gradually evolve to reach an even ratio at lower temperatures. Moreover, we have identified the ferro-rotational order phase transition as weakly first order and have revealed its coupling field as a unique combination of the induced electric quadrupole second-harmonic generation and the incident fundamental electric fields.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Categorizing ferroic orders with vector order parameters.
Fig. 2: Identifying the bulk EQ contribution to room-temperature SHG.
Fig. 3: Tracking the temperature dependence of the ferro-rotational order.
Fig. 4: Resolving the temperature dependence of fitting parameters.

Data availability

The data represented in Figs. 2b,c, 3 and 4 are available with the online version of this paper. All other data that supports the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Gopalan, V. & Litvin, D. B. Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10, 376–381 (2011).

    Article  ADS  Google Scholar 

  2. Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).

    Article  ADS  Google Scholar 

  3. Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity and multiferroicity. npj Quantum Mater. 3, 19 (2018).

    Article  ADS  Google Scholar 

  4. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  ADS  Google Scholar 

  5. Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

    Article  ADS  Google Scholar 

  6. White, J. S. et al. Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2. Phys. Rev. B 88, 060409 (2013).

    Article  ADS  Google Scholar 

  7. Landau, L. D. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937).

    Google Scholar 

  8. Tolédano, J. C. & Tolédano, P. The Landau Theory of Phase Transitions Vol. 3 (World Scientific, 1987).

  9. Kiss, A. & Kuramoto, Y. Scalar order: possible candidate for order parameters in skutterudites. J. Phys. Soc. Jpn 75, 103704 (2006).

    Article  ADS  Google Scholar 

  10. Santini, P. et al. Multipolar interactions in f-electron systems: the paradigm of actinide dioxides. Rev. Mod. Phys. 81, 807–863 (2009).

    Article  ADS  Google Scholar 

  11. Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  ADS  Google Scholar 

  12. Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).

    Article  ADS  Google Scholar 

  13. Hayami, S., Kusunose, H. & Motome, Y. Toroidal order in metals without local inversion symmetry. Phys. Rev. B 90, 024432 (2014).

    Article  ADS  Google Scholar 

  14. Aizu, K. Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

    Article  ADS  Google Scholar 

  15. Wadhawan, V. Introduction to Ferroic Materials (Taylor & Francis, 2000).

  16. Nicola, A. S., Manfred, F. & Maxim, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Article  Google Scholar 

  17. Kenzelmann, M. et al. Direct transition from a disordered to a multiferroic phase on a triangular lattice. Phys. Rev. Lett. 98, 267205 (2007).

    Article  ADS  Google Scholar 

  18. Waśkowska, A. et al. Temperature- and pressure-dependent lattice behaviour of RbFe(MoO4)2. J. Phys. Condens. Matter 22, 055406 (2010).

    Article  ADS  Google Scholar 

  19. Johnson, R. D. et al. Cu3Nb2O8: a multiferroic with chiral coupling to the crystal structure. Phys. Rev. Lett. 107, 137205 (2011).

    Article  ADS  Google Scholar 

  20. Miller, R. C. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5, 17–19 (1964).

    Article  ADS  Google Scholar 

  21. Shen, Y. R. Optical second harmonic generation at interfaces. Annu. Rev. Phys. Chem. 40, 327–350 (1989).

    Article  ADS  Google Scholar 

  22. Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article  Google Scholar 

  23. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article  ADS  Google Scholar 

  24. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  ADS  Google Scholar 

  25. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2016).

    Article  Google Scholar 

  26. Torchinsky, D. H. et al. Structural distortion-induced magnetoelastic locking in Sr2IrO4 revealed through nonlinear optical harmonic generation. Phys. Rev. Lett. 114, 096404 (2015).

    Article  ADS  Google Scholar 

  27. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2015).

    Article  Google Scholar 

  28. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2016).

    Article  Google Scholar 

  29. Harter, J. W., Zhao, Z. Y., Yan, J. Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    Article  ADS  Google Scholar 

  30. Inami, T. Neutron powder diffraction experiments on the layered triangular-lattice antiferromagnets RbFe(MoO4)2 and CsFe(SO4)2. J. Solid State Chem. 180, 2075–2079 (2007).

    Article  ADS  Google Scholar 

  31. Hearmon, A. J. et al. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2. Phys. Rev. Lett. 108, 237201 (2012).

    Article  ADS  Google Scholar 

  32. Klimin, S. A. et al. Structural phase transition in the two-dimensional triangular lattice antiferromagnet RbFe(MoO4)2. Phys. Rev. B 68, 174408 (2003).

    Article  ADS  Google Scholar 

  33. Devonshire, A. F. Theory of ferroelectrics. Adv. Phys. 3, 85–130 (1954).

    Article  ADS  Google Scholar 

Download references


We acknowledge technical assistance from K. Mattioli. L.Z. acknowledges support from NSF CAREER grant no. DMR-174774. E.D. acknowledges support by the NSF Graduate Research Fellowship Program under grant no. DGE-1256260. S.C. acknowledges that the work at Rutgers is funded by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF4413 to the Rutgers Center for Emergent Materials. K.S. acknowledges support from NSF grant no. NSF-EFMA-1741618 and the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations



W.J., S.-W.C. and L.Z. conceived and initiated the project. A.A. and S.-W.C. synthesized the bulk RbFe(MoO4)2 crystals. W.J., E.D. and S.L. performed RA SHG measurements. W.J. and E.D. carried out the Landau theory analysis under the guidance of K.S. and L.Z. W.J., E.D. and L.Z. analysed the data and wrote the manuscript. All authors participated in the discussion of the results.

Corresponding author

Correspondence to Liuyan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Manfred Fiebig, Shiwei Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Supplementary Tables 1–3 and Supplementary references 1 and 2.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Drueke, E., Li, S. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing