Quenched nematic criticality and two superconducting domes in an iron-based superconductor


The nematic electronic state and its associated critical fluctuations have emerged as a potential candidate for the superconducting pairing in various unconventional superconductors. However, in most materials their coexistence with magnetically ordered phases poses a significant challenge in determining their importance. Here, by combining chemical and hydrostatic physical pressure in FeSe0.89S0.11, we access a nematic quantum phase transition isolated from any other competing magnetic phases. From quantum oscillations in high magnetic fields, we trace the evolution of the Fermi surface and electronic correlations as a function of applied pressure and detect a Lifshitz transition that separates two distinct superconducting regions. One emerges from the nematic phase with a small Fermi surface and strong electronic correlations, while the other one has a large Fermi surface and weak correlations that promotes nesting and stabilization of a magnetically ordered phase at high pressures. The absence of mass divergence at the nematic quantum phase transition suggests that the nematic fluctuations could be quenched by the strong coupling to the lattice or local strain effects. A direct consequence is the weakening of superconductivity at the nematic quantum phase transition in the absence of magnetically driven fluctuations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transport under pressure in FeSe0.89S0.11.
Fig. 2: Evolution of quantum oscillations with pressure in FeSe0.89S0.11.
Fig. 3: Pressure tuning of Fermi surface and electronic correlations.
Fig. 4: Pressure–temperature phase diagrams.

Data availability

The experimental data in our manuscript are available through the ORA depository at the University of Oxford at https://doi.org/10.5287/bodleian:2REyEPKZX. Other information is available from the corresponding authors upon reasonable request.


  1. 1.

    Sachdev, S. & Keimer, B. Quantum criticality. Phys. Today 64, 29–35 (2011).

    Google Scholar 

  2. 2.

    Schofield, A. J. Non-Fermi liquids. Contemp. Phys. 40, 95–115 (1999).

    ADS  Google Scholar 

  3. 3.

    Pomeranchuk, I. I. On the stability of a Fermi liquid. Phys. Rev. Lett. 8, 361 (1958).

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Google Scholar 

  5. 5.

    Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point. Proc. Natl Acad. Sci. USA 114, 4905–4910 (2017).

    ADS  Google Scholar 

  6. 6.

    Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2016).

    ADS  Google Scholar 

  7. 7.

    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T. & Takano, Y. Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl. Phys. Lett. 93, 152505 (2008).

    ADS  Google Scholar 

  8. 8.

    Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630–633 (2009).

    ADS  Google Scholar 

  9. 9.

    Terashima, T. et al. Pressure-induced antiferromagnetic transition and phase diagram in FeSe. J. Phys. Soc. Jpn 84, 063701 (2015).

    ADS  Google Scholar 

  10. 10.

    Terashima, T. et al. Fermi surface reconstruction in FeSe under high pressure. Phys. Rev. B 93, 094505 (2016).

    ADS  Google Scholar 

  11. 11.

    Wang, F., Kivelson, S. A. & Lee, D.-H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 11, 959–963 (2015).

    Google Scholar 

  12. 12.

    Wang, Q. et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat. Mater. 15, 159–163 (2016).

    ADS  Google Scholar 

  13. 13.

    Sun, J. P. et al. High-T c superconductivity in FeSe at high pressure: dominant hole carriers and enhanced spin fluctuations. Phys. Rev. Lett. 118, 147004 (2017).

    ADS  Google Scholar 

  14. 14.

    Kothapalli, K. et al. Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe. Nat. Commun. 7, 12728 (2016).

    ADS  Google Scholar 

  15. 15.

    Imai, T., Ahilan, K., Ning, F. L., McQueen, T. M. & Cava, R. J. Why does undoped FeSe become a high-T c superconductor under pressure? Phys. Rev. Lett. 102, 177005 (2009).

    ADS  Google Scholar 

  16. 16.

    Bendele, M. et al. Pressure induced static magnetic order in superconducting FeSe1−x. Phys. Rev. Lett. 104, 087003 (2010).

    ADS  Google Scholar 

  17. 17.

    Watson, M. D. et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B 91, 155106 (2015).

    ADS  Google Scholar 

  18. 18.

    Watson, M. D. et al. Suppression of orbital ordering by chemical pressure in FeSe1−xSx. Phys. Rev. B 92, 121108 (2015).

    ADS  Google Scholar 

  19. 19.

    Coldea, A. I. et al. Evolution of the low-temperature Fermi surface of superconducting FeSe1−xSx across a nematic phase transition. npj Quantum Mater. 4, 2 (2019).

    ADS  Google Scholar 

  20. 20.

    Reiss, P. et al. Suppression of electronic correlations by chemical pressure from FeSe to FeS. Phys. Rev. B 96, 121103 (2017).

    ADS  Google Scholar 

  21. 21.

    Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors. Proc. Natl Acad. Sci. USA 113, 8139–8143 (2016).

    ADS  Google Scholar 

  22. 22.

    Matsuura, K. et al. Maximizing T c by tuning nematicity and magnetism in FeSe1−xSx superconductors. Nat. Commun. 8, 1143 (2017).

    ADS  Google Scholar 

  23. 23.

    Xiang, L. et al. Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure. Phys. Rev. B 96, 024511 (2017).

    ADS  Google Scholar 

  24. 24.

    Yip, K. Y. et al. Weakening of the diamagnetic shielding in FeSe1−xSx at high pressures. Phys. Rev. B 96, 020502 (2017).

    ADS  Google Scholar 

  25. 25.

    Coldea, A. I. & Watson, M. D. The key ingredients of the electronic structure of FeSe. Annu. Rev. Cond. Matt. Phys. 9, 125–146 (2018).

    ADS  Google Scholar 

  26. 26.

    Chubukov, A. V., Khodas, M. & Fernandes, R. M. Magnetism, superconductivity, and spontaneous orbital order in iron-based superconductors: which comes first and why? Phys. Rev. X 6, 041045 (2016).

    Google Scholar 

  27. 27.

    Paul, I. & Garst, M. Lattice effects on nematic quantum criticality in metals. Phys. Rev. Lett. 118, 227601 (2017).

    ADS  Google Scholar 

  28. 28.

    Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).

    ADS  Google Scholar 

  29. 29.

    Maslov, D. L., Yudson, V. I. & Chubukov, A. V. Resistivity of a non-Galilean–invariant Fermi liquid near Pomeranchuk quantum criticality. Phys. Rev. Lett. 106, 106403 (2011).

    ADS  Google Scholar 

  30. 30.

    Löhneysen, Hv, Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    ADS  Google Scholar 

  31. 31.

    Oliver, G. T. Quantum Multicriticality. PhD thesis, Univ. Birmingham (2017).

  32. 32.

    Wang, X. & Berg, E. Scattering mechanisms and electrical transport near an Ising nematic quantum critical point. Phys. Rev. B 99, 235136 (2019).

    ADS  Google Scholar 

  33. 33.

    Licciardello, S. et al. Electrical resistivity across a nematic quantum critical point. Nature 567, 213–217 (2019).

    ADS  Google Scholar 

  34. 34.

    Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).

    ADS  Google Scholar 

  35. 35.

    Analytis, J. G. et al. Transport near a quantum critical point in BaFe2(As1−xPx)2. Nat. Phys. 10, 194–197 (2014).

    Google Scholar 

  36. 36.

    Watson, M. D. et al. Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic fields. Phys. Rev. Lett. 115, 027006 (2015).

    ADS  Google Scholar 

  37. 37.

    Tomita, T. et al. Correlation between T c and crystal structure in S-doped FeSe superconductors under pressure: studied by x-ray diffraction of FeSe0.8S0.2 at low temperatures. J. Phys. Soc. Jpn. 84, 1–8 (2015).

    Google Scholar 

  38. 38.

    Kasahara, S. et al. Field-induced superconducting phase of FeSe in the BCS–BEC cross-over. Proc. Natl Acad. Sci. USA 111, 16309–16313 (2014).

    ADS  Google Scholar 

  39. 39.

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  40. 40.

    Terashima, T. et al. Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements. Phys. Rev. B 90, 144517 (2014).

    ADS  Google Scholar 

  41. 41.

    Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx. Sci. Adv. 4, eaar6419 (2018).

    ADS  Google Scholar 

  42. 42.

    Sato, Y. et al. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx. Proc. Natl Acad. Sci. USA 115, 1227–1231 (2018).

    ADS  Google Scholar 

  43. 43.

    Kuwayama, T. et al. 77Se-NMR study under pressure on 12%-S doped FeSe. J. Phys. Soc. Jpn 88, 033703 (2019).

    ADS  Google Scholar 

  44. 44.

    Wiecki, P. et al. Persistent correlation between superconductivity and antiferromagnetic fluctuations near a nematic quantum critical point in FeSe1−xSx. Phys. Rev. B 98, 020507 (2018).

    ADS  Google Scholar 

  45. 45.

    Shishido, H. et al. Evolution of the Fermi surface of BaFe2(As1−xPx)2 on entering the superconducting dome. Phys. Rev. Lett. 104, 057008 (2010).

    ADS  Google Scholar 

  46. 46.

    Massat, P. et al. Collapse of critical nematic fluctuations in FeSe under pressure. Phys. Rev. Lett. 121, 077001 (2018).

    ADS  Google Scholar 

  47. 47.

    Labat, D. & Paul, I. Pairing instability near a lattice-influenced nematic quantum critical point. Phys. Rev. B 96, 195146 (2017).

    ADS  Google Scholar 

  48. 48.

    de Carvalho, V. S. & Fernandes, R. M. Resistivity near a nematic quantum critical point: impact of acoustic phonons. Phys. Rev. B 100, 115103 (2019).

    ADS  Google Scholar 

  49. 49.

    Bristow, M. et al. Anomalous high-magnetic field electronic state of the nematic superconductors FeSe1−xSx. Preprint at https://arXiv.org/abs/1904.02522 (2019).

  50. 50.

    Carlson, E. W., Dahmen, K. A., Fradkin, E. & Kivelson, S. A. Hysteresis and noise from electronic nematicity in high-temperature superconductors. Phys. Rev. Lett. 96, 097003 (2006).

    ADS  Google Scholar 

  51. 51.

    Jaramillo, R., Feng, Y., Wang, J. & Rosenbaum, T. F. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl Acad. Sci. USA 107, 13631–13635 (2010).

    ADS  Google Scholar 

  52. 52.

    Böhmer, A. E. et al. Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe. Phys. Rev. B 87, 180505 (2013).

    ADS  Google Scholar 

  53. 53.

    Böhmer, A. E., Taufour, V., Straszheim, W. E., Wolf, T. & Canfield, P. C. Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe. Phys. Rev. B 94, 024526 (2016).

    ADS  Google Scholar 

  54. 54.

    Proust, C., Vignolle, B., Levallois, J., Adachi, S. & Hussey, N. E. Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa2Cu4O8. Proc. Natl Acad. Sci. USA 113, 13654–13659 (2016).

    ADS  Google Scholar 

  55. 55.

    Massat, P. et al. Charge-induced nematicity in FeSe. Proc. Natl Acad. Sci. USA 113, 9177–9181 (2016).

    ADS  Google Scholar 

Download references


We thank P. Cai for technical support with setting up the Physical Property Measurement System pressure cell and A. Chubukov, E. Berg, R. Fernandes, I. Paul, R. Valenti, I. Vekhter, M. Watson, Z. Zajicek, S. Parameswaran and S. Simon for useful discussions and comments. This work was mainly supported by the EPSRC (EP/I004475/1, EP/I017836/1). A.A.H. acknowledges the financial support of the Oxford Quantum Materials Platform Grant (EP/M020517/1). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. Part of this work was supported by HFML-RU/FOM and LNCMI-CNRS, members of the European Magnetic Field Laboratory (EMFL) and by EPSRC (UK) via its membership to the EMFL (grant no. EP/N01085X/1). Part of this work at the LNCMI was supported by Programme Investissements d’Avenir under the programme ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. A.I.C. acknowledges the hospitality of KITP supported by the National Science Foundation under grant no. NSF PHY- 1125915. We also acknowledge financial support of the John Fell Fund of Oxford University. A.I.C. acknowledges an EPSRC Career Acceleration Fellowship (EP/I004475/1) and Oxford Centre for Applied Superconductivity.

Author information




A.I.C. proposed and supervised the project. P.R., D.G. and A.I.C. performed experiments in the hybrid magnet in Tallahassee. P.R., W.K., L.D., M.B. and A.I.C. performed experiments in pulsed fields in Toulouse. A.A.H. grew the single crystals. A.J.S. provided theoretical input. P.R. and A.I.C. performed data analysis and wrote the paper with contributions and comments from all of the authors.

Corresponding authors

Correspondence to Pascal Reiss or Amalia I. Coldea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Yann Gallais, Maxim Khodas, Liling Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and refs. 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reiss, P., Graf, D., Haghighirad, A.A. et al. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 16, 89–94 (2020). https://doi.org/10.1038/s41567-019-0694-2

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing