Interacting topological edge channels

Article metrics


Electrical currents in a quantum spin Hall insulator are confined to the boundary of the system. The charge carriers behave as massless relativistic particles whose spin and momentum are coupled to each other. Although the helical character of those states is already established by experiments, there is an open question regarding how those edge states interact with each other when they are brought into close spatial proximity. We employ an inverted HgTe quantum well to guide edge channels from opposite sides of a device into a quasi-one-dimensional constriction. Our transport measurements show that, apart from the expected quantization in integer steps of 2e2/h, we find an additional plateau at e2/h. We combine band structure calculations and repulsive electron–electron interaction effects captured within the Tomonaga–Luttinger liquid model and Rashba spin–orbit coupling to explain our observation in terms of the opening of a spin gap. These results may have direct implications for the study of one-dimensional helical electron quantum optics, and for understanding Majorana and para fermions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Realization of a topological QPC.
Fig. 2: Width dependencies of the 0.5 anomaly.
Fig. 3: k  p band structure calculations and illustrations of the scattering process.
Fig. 4: Temperature and d.c. bias dependence of the 0.5 anomaly.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

  2. 2.

    Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

  3. 3.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  4. 4.

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

  5. 5.

    Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

  6. 6.

    Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

  7. 7.

    Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

  8. 8.

    Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

  9. 9.

    Brüne, C. et al. Spin polarization of the quantum spin Hall edge states. Nat. Phys. 8, 486–491 (2012).

  10. 10.

    Hou, C.-Y., Kim, E.-A. & Chamon, C. Corner junction as a probe of helical edge states. Phys. Rev. Lett. 102, 076602 (2009).

  11. 11.

    Ström, A. & Johannesson, H. Tunneling between edge states in a quantum spin Hall system. Phys. Rev. Lett. 102, 096806 (2009).

  12. 12.

    Teo, J. C. Y. & Kane, C. L. Critical behavior of a point contact in a quantum spin Hall insulator. Phys. Rev. B 79, 235321 (2009).

  13. 13.

    Tanaka, Y. & Nagaosa, N. Two interacting helical edge modes in quantum spin Hall systems. Phys. Rev. Lett. 103, 166403 (2009).

  14. 14.

    Dolcini, F. Full electrical control of charge and spin conductance through interferometry of edge states in topological insulators. Phys. Rev. B 83, 165304 (2011).

  15. 15.

    Krueckl, V. & Richter, K. Switching spin and charge between edge states in topological insulator constrictions. Phys. Rev. Lett. 107, 086803 (2011).

  16. 16.

    Zhang, L. B., Cheng, F., Zhai, F. & Chang, K. Electrical switching of the edge channel transport in HgTe quantum wells with an inverted band structure. Phys. Rev. B 83, 081402 (2011).

  17. 17.

    Orth, C. P., Strübi, G. & Schmidt, T. L. Point contacts and localization in generic helical liquids. Phys. Rev. B 88, 165315 (2013).

  18. 18.

    Sternativo, P. & Dolcini, F. Tunnel junction of helical edge states: determining and controlling spin-preserving and spin-flipping processes through transconductance. Phys. Rev. B 89, 035415 (2014).

  19. 19.

    Dolcini, F. Noise and current correlations in tunnel junctions of quantum spin Hall edge states. Phys. Rev. B 92, 155421 (2015).

  20. 20.

    Papaj, M., Cywiński, L., Wróbel, J. & Dietl, T. Conductance oscillations in quantum point contacts of InAs/GaSb heterostructures. Phys. Rev. B 93, 195305 (2016).

  21. 21.

    Micolich, A. P. What lurks below the last plateau: experimental studies of the 0.7 × 2e 2/h conductance anomaly in one-dimensional systems. J. Phys. Condens. Matter 23, 443201 (2011).

  22. 22.

    Bauer, F. et al. Microscopic origin of the ‘0.7-anomaly’ in quantum point contacts. Nature 501, 73–78 (2013).

  23. 23.

    Bendias, K. et al. High mobility HgTe microstructures for quantum spin Hall studies. Nano Lett. 18, 4831–4836 (2018).

  24. 24.

    Novik, E. G. et al. Band structure of semimagnetic Hg1 − yMnyTe quantum wells. Phys. Rev. B 72, 035321 (2005).

  25. 25.

    Skolasinski, R., Pikulin, D. I., Alicea, J. & Wimmer, M. Robust helical edge transport in quantum spin Hall quantum wells. Phys. Rev. B 98, 201404 (2018).

  26. 26.

    Schmidt, T. L., Rachel, S., von Oppen, F. & Glazman, L. I. Inelastic electron backscattering in a generic helical edge channel. Phys. Rev. Lett. 108, 156402 (2012).

  27. 27.

    Ortiz, L., Molina, R. A., Platero, G. & Lunde, A. M. Generic helical edge states due to Rashba spin–orbit coupling in a topological insulator. Phys. Rev. B 93, 205431 (2016).

  28. 28.

    Xie, H.-Y., Li, H., Chou, Y.-Z. & Foster, M. S. Topological protection from random Rashba spin–orbit backscattering: ballistic transport in a helical Luttinger liquid. Phys. Rev. Lett. 116, 086603 (2016).

  29. 29.

    Kharitonov, M., Geissler, F. & Trauzettel, B. Backscattering in a helical liquid induced by Rashba spin–orbit coupling and electron interactions: locality, symmetry and cutoff aspects. Phys. Rev. B 96, 155134 (2017).

  30. 30.

    Liu, C.-X., Budich, J. C., Recher, P. & Trauzettel, B. Charge-spin duality in nonequilibrium transport of helical liquids. Phys. Rev. B 83, 035407 (2011).

  31. 31.

    Giamarchi, T. Quantum Physics in One Dimension (International Series of Monographs on Physics, Oxford Univ. Press, 2003).

  32. 32.

    Lunde, A. M., De Martino, A., Schulz, A., Egger, R. & Flensberg, K. Electron–electron interaction effects in quantum point contacts. New J. Phys. 11, 023031 (2009).

  33. 33.

    Sloggett, C., Milstein, A. & Sushkov, O. Correlated electron current and temperature dependence of the conductance of a quantum point contact. Eur. Phys. J. 61, 427–432 (2008).

  34. 34.

    Wang, J., Meir, Y. & Gefen, Y. Spontaneous breakdown of topological protection in two dimensions. Phys. Rev. Lett. 118, 046801 (2017).

  35. 35.

    Matveev, K. A. Conductance of a quantum wire in the Wigner-crystal regime. Phys. Rev. Lett. 92, 106801 (2004).

  36. 36.

    Hsu, C.-H., Stano, P., Klinovaja, J. & Loss, D. Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators. Phys. Rev. B 97, 125432 (2018).

Download references


We thank E. Bocquillon, T. Borzenko, Y. Gefen, C. Gould, A. Currie, V. Hock, P. Leubner and Y. Meir for fruitful discussions. We acknowledge financial support by the DFG (SPP1666 and SFB1170 ‘ToCoTronics’), the ENB Graduate school on ‘Topological Insulators’, the EU ERC-AG Program (project 4-TOPS) and the Würzburg–Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (EXC 2147, project ID 39085490). C.F. acknowledges support from the Studienstiftung des Deutschen Volkes.

Author information

J.S. prepared the samples and performed the experiments. V.L.M. and P.S. contributed to implementation of the fabrication process, and S.S. and J.W. helped to carry out measurements. J.K. supervised the sample fabrication. J.W. guided the experiments. L.L. grew the material. W.B. provided the code for the band structure calculations. C.F., N.T.Z. and B.T. developed the theoretic model. H.B. and L.W.M. planned the project and design of the experiment. All authors participated in the analysis of the data, led by J.S. and J.W. All authors jointly wrote the manuscript.

Correspondence to Jonas Strunz or Björn Trauzettel or Laurens W. Molenkamp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional theoretical details and Supplementary Figs. 1–6, Tables 1 and 2, and refs. 1–17.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strunz, J., Wiedenmann, J., Fleckenstein, C. et al. Interacting topological edge channels. Nat. Phys. (2019) doi:10.1038/s41567-019-0692-4

Download citation