Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A coherent nanomechanical oscillator driven by single-electron tunnelling


A single-electron transistor embedded in a nanomechanical resonator represents an extreme limit of electron–phonon coupling. While it allows fast and sensitive electromechanical measurements, it also introduces back-action forces from electron tunnelling that randomly perturb the mechanical state. Despite the stochastic nature of this back-action, it has been predicted to create self-sustaining coherent mechanical oscillations under strong coupling conditions. Here, we verify this prediction using real-time measurements of a vibrating carbon nanotube transistor. This electromechanical oscillator has some similarities with a laser. The single-electron transistor pumped by an electrical bias acts as a gain medium and the resonator acts as a phonon cavity. Although the operating principle is unconventional because it does not involve stimulated emission, we confirm that the output is coherent. We demonstrate other analogues of laser behaviour, including injection locking, classical squeezing through anharmonicity and frequency narrowing through feedback.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strongly coupled single-electron electromechanics.
Fig. 2: Mechanical resonance and oscillation.
Fig. 3: Coherence of the free-running oscillator.
Fig. 4: Tuning the coherence with a gate voltage.
Fig. 5: Injection locking of the nanomechanical oscillator.
Fig. 6: Stabilizing the oscillator with feedback.

Data availability

The data represented in Figs. 26 are available as source data in Supplementary Data 15. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Clerk, A. A. et al. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  2. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    ADS  Google Scholar 

  3. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    ADS  Google Scholar 

  4. Mozyrsky, D., Hastings, M. B. & Martin, I. Intermittent polaron dynamics: Born-Oppenheimer approximation out of equilibrium. Phys. Rev. B 73, 035104 (2006).

    ADS  Google Scholar 

  5. Steele, G. A. et al. Strong coupling between single-electron tunneling and nanomechanical motion. Science 325, 1103–1107 (2009).

    ADS  Google Scholar 

  6. Lassagne, B., Tarakanov, Y., Kinaret, J., Daniel, G. S. & Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325, 1107–1110 (2009).

    ADS  Google Scholar 

  7. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    ADS  Google Scholar 

  8. Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Google Scholar 

  9. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    ADS  Google Scholar 

  10. Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon lasing in an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013).

    ADS  Google Scholar 

  11. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    ADS  Google Scholar 

  12. Wen, Y., Ares, N., Pei, T., Briggs, G. A. D. & Laird, E. A. Measuring carbon nanotube vibrations using a single-electron transistor as a fast linear amplifier. Appl. Phys. Lett. 113, 153101 (2018).

    ADS  Google Scholar 

  13. de Bonis, S. L. et al. Ultrasensitive displacement noise measurement of carbon nanotube mechanical resonators. Nano Lett. 18, 5324–5328 (2018).

    ADS  Google Scholar 

  14. Khivrich, I., Clerk, A. A. & Ilani, S. Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube. Nat. Nanotechnol. 14, 161–167 (2019).

    ADS  Google Scholar 

  15. Armour, A. D., Blencowe, M. P. & Zhang, Y. Classical dynamics of a nanomechanical resonator coupled to a single-electron transistor. Phys. Rev. B 69, 125313 (2004).

    ADS  Google Scholar 

  16. Rodrigues, D. A., Imbers, J. & Armour, A. D. Quantum dynamics of a resonator driven by a superconducting single-electron transistor: a solid-state analogue of the micromaser. Phys. Rev. Lett. 98, 067204 (2007).

    ADS  Google Scholar 

  17. Bennett, S. D. & Clerk, A. A. Laser-like instabilities in quantum nano-electromechanical systems. Phys. Rev. B 74, 201301 (2006).

    ADS  Google Scholar 

  18. Usmani, O., Blanter, Y. M. & Nazarov, Y. V. Strong feedback and current noise in nanoelectromechanical systems. Phys. Rev. B 75, 195312 (2007).

    ADS  Google Scholar 

  19. Hüttel, A. K., Witkamp, B., Leijnse, M., Wegewijs, M. & van der Zant, H. S. J. Pumping of vibrational excitations in the Coulomb-blockade regime in a suspended carbon nanotube. Phys. Rev. Lett. 102, 225501 (2009).

    ADS  Google Scholar 

  20. Eichler, A., Chaste, J., Moser, J. & Bachtold, A. Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 11, 2699–2703 (2011).

    ADS  Google Scholar 

  21. Tsioutsios, I., Tavernarakis, A., Osmond, J., Verlot, P. & Bachtold, A. Real-time measurement of nanotube resonator fluctuations in an electron microscope. Nano Lett. 17, 1748–1755 (2017).

    ADS  Google Scholar 

  22. Barnard, A. W., Zhang, M., Wiederhecker, G. S., Lipson, M. & McEuen, P. L. Real-time vibrations of a carbon nanotube. Nature 566, 89–93 (2019).

    ADS  Google Scholar 

  23. Wu, C. C., Liu, C. H. & Zhong, Z. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett. 10, 1032–1036 (2010).

    ADS  Google Scholar 

  24. Schupp, F. J. et al. Radio-frequency reflectometry of a quantum dot using an ultra-low-noise SQUID amplifier. Preprint at

  25. Liu, Y.-Y. et al. Semiconductor double quantum dot micromaser. Science 347, 285–287 (2015).

    ADS  Google Scholar 

  26. Cassidy, M. C. et al. Demonstration of an ac Josephson junction laser. Science 355, 939–942 (2017).

    ADS  Google Scholar 

  27. Pistolesi, F., Blanter, Y. M. & Martin, I. Self-consistent theory of molecular switching. Phys. Rev. B 78, 085127 (2008).

    ADS  Google Scholar 

  28. Fox, M. Quantum Optics: An Introduction (Oxford University Press, 2006).

  29. Fujisawa, T. et al. Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998).

    ADS  Google Scholar 

  30. Steeneken, P. G. et al. Piezoresistive heat engine and refrigerator. Nat. Phys. 7, 354–359 (2011).

    Google Scholar 

  31. Stover, H. L. & Steier, W. H. Locking of laser oscillators by light injection. Appl. Phys. Lett. 8, 91 (1966).

    ADS  Google Scholar 

  32. Liu, Y.-Y., Stehlik, J., Gullans, M. J., Taylor, J. M. & Petta, J. R. Injection locking of a semiconductor double-quantum-dot micromaser. Phys. Rev. A 92, 053802 (2015).

    ADS  Google Scholar 

  33. Knünz, S. et al. Injection locking of a trapped-ion phonon laser. Phys. Rev. Lett. 105, 013004 (2010).

    ADS  Google Scholar 

  34. Seitner, M. J., Abdi, M., Ridolfo, A., Hartmann, M. J. & Weig, E. M. Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 118, 254301 (2017).

    ADS  Google Scholar 

  35. Adler, R. A study of locking phenomena in oscillators. Proc. IRE 34, 351–357 (1946).

    Google Scholar 

  36. Huber, J. S. et al. Detecting squeezing from the fluctuation spectrum of a driven nanomechanical mode. Preprint at (2019).

  37. Stambaugh, C. & Chan, H. B. Supernarrow spectral peaks near a kinetic phase transition in a driven nonlinear micromechanical oscillator. Phys. Rev. Lett. 97, 110602 (2006).

    ADS  Google Scholar 

  38. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    ADS  Google Scholar 

  39. Wiseman, H. M. Light amplification without stimulated emission: beyond the standard quantum limit to the laser linewidth. Phys. Rev. A 60, 4083–4093 (1999).

    ADS  Google Scholar 

  40. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).

    ADS  Google Scholar 

  41. Stipe, B. C. et al. Electron spin relaxation near a micron-size ferromagnet. Phys. Rev. Lett. 87, 277602 (2001).

    Google Scholar 

  42. Maryam, W., Akimov, A. V., Campion, R. P. & Kent, A. J. Dynamics of a vertical cavity quantum cascade phonon laser structure. Nat. Commun. 4, 2184 (2013).

    ADS  Google Scholar 

  43. Wiseman, H. M. Defining the (atom) laser. Phys. Rev. A 56, 2068–2084 (1997).

    ADS  Google Scholar 

  44. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    ADS  Google Scholar 

  45. Brandes, T. & Lambert, N. Steering of a bosonic mode with a double quantum dot. Phys. Rev. B 67, 125323 (2003).

    ADS  Google Scholar 

  46. Ohm, C., Stampfer, C., Splettstoesser, J. & Wegewijs, M. Readout of carbon nanotube vibrations based on spin-phonon coupling. Appl. Phys. Lett. 100, 143103 (2012).

    ADS  Google Scholar 

  47. Pályi, A., Struck, P. R., Rudner, M. S., Flensberg, K. & Burkard, G. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108, 206811 (2012).

    ADS  Google Scholar 

  48. Ogata, K. Modern Control Engineering (Prentice Hall, 1970).

Download references


We acknowledge A. Bachtold, E. M. Gauger, Y. Pashkin, A. Romito and M. Woolley for discussions, and T. Orton for technical support. This work was supported by EPSRC (EP/N014995/1, EP/R029229/1), DSTL, Templeton World Charity Foundation, the Royal Academy of Engineering, the European Research Council (grant agreement 818751), and the EU H2020 European Microkelvin Platform (grant agreement 824109).

Author information

Authors and Affiliations



Y.W. fabricated the device following a recipe devised by T.P., and performed the experiment and analysis with contributions from N.A., F.J.S. and E.A.L. Y.W. and E.A.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to E. A. Laird.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Methods, Discussion and References.

Supplementary Data 1

Source Data for Fig. 2.

Supplementary Data 2

Source Data for Fig. 3.

Supplementary Data 3

Source Data for Fig. 4.

Supplementary Data 4

Source Data for Fig. 5.

Supplementary Data 5

Source Data for Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Ares, N., Schupp, F.J. et al. A coherent nanomechanical oscillator driven by single-electron tunnelling. Nat. Phys. 16, 75–82 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing