Abstract
Decoherence plays a major role in our current understanding of the conceptual foundations of quantum physics1. In many instances, decoherence is also a threat that must be countered (for instance, in quantum information processing or quantum technologies). While decoherence has been extensively studied for simple, well-isolated systems such as single atoms or ions2, much less is known for many-body systems where interparticle correlations and interactions can drastically alter the dissipative dynamics3,4,5,6. Here, we study experimentally the decoherence of a gas of strongly interacting bosons in an optical lattice exposed to near-resonant light and spontaneous emission. We observe an anomalous subdiffusion in momentum space, associated with a universal slowing down ∝1/t1/2 of the loss of spatial coherence. This algebraic decay reflects the emergence of slowly relaxing many-body states5, akin to the subradiant states of many excited emitters4. These results, supported by theoretical predictions, provide an important benchmark in the understanding of open many-body systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information and Source Data.
References
Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).
Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, 2006).
Cai, Z. & Barthel, T. Algebraic versus exponential decoherence in dissipative many-particle systems. Phys. Rev. Lett. 111, 150403 (2013).
Henriet, L., Douglas, J. S., Chang, D. E. & Albrecht, A. Critical open-system dynamics in a one-dimensional optical-lattice clock. Phys. Rev. A 99, 023802 (2019).
Poletti, D., Barmettler, P., Georges, A. & Kollath, C. Emergence of glasslike dynamics for dissipative and strongly interacting bosons. Phys. Rev. Lett. 111, 195301 (2013).
Pichler, H., Daley, A. J. & Zoller, P. Nonequilibrium dynamics of bosonic atoms in optical lattices: decoherence of many-body states due to spontaneous emission. Phys. Rev. A 82, 063605 (2010).
Daley, A. J. Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014).
Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331 (2008).
Barontini, G. et al. Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys. Rev. Lett. 110, 035302 (2013).
Zhu, B. et al. Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect. Phys. Rev. Lett. 112, 070404 (2014).
Tomita, T., Nakajima, S., Danshita, I., Takasu, Y. & Takahashi, Y. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose–Hubbard system. Sci. Adv. 3, e1701513 (2017).
Sponselee, K. et al. Dynamics of ultracold quantum gases in the dissipative Fermi–Hubbard model. Quantum Sci. Technol. 4, 014002 (2018).
Labouvie, R., Santra, B., Heun, S. & Ott, H. Bistability in a driven-dissipative superfluid. Phys. Rev. Lett. 116, 235302 (2016).
Rauer, B. et al. Cooling of a one-dimensional Bose gas. Phys. Rev. Lett. 116, 030402 (2016).
Schemmer, M. & Bouchoule, I. Cooling a Bose gas by three-body losses. Phys. Rev. Lett. 121, 200401 (2018).
Holland, M., Marksteiner, S., Marte, P. & Zoller, P. Measurement induced localization from spontaneous decay. Phys. Rev. Lett. 76, 3683–3686 (1996).
Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).
Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980).
Pfau, T., Spälter, S., Kurtsiefer, C., Ekstrom, C. R. & Mlynek, J. Loss of spatial coherence by a single spontaneous emission. Phys. Rev. Lett. 73, 1223–1226 (1994).
Patil, Y. S., Chakram, S. & Vengalattore, M. Measurement-induced localization of an ultracold lattice gas. Phys. Rev. Lett. 115, 140402 (2015).
Lüschen, H. P. et al. Signatures of many-body localization in a controlled open quantum system. Phys. Rev. X 7, 011034 (2017).
Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990).
Poletti, D., Bernier, J.-S., Georges, A. & Kollath, C. Interaction-induced impeding of decoherence and anomalous diffusion. Phys. Rev. Lett. 109, 045302 (2012).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Zwerger, W. Mott–Hubbard transition of cold atoms in an optical lattice. J. Opt. B 5, S9–S16 (2003).
Bouganne, R. et al. Clock spectroscopy of interacting bosons in deep optical lattices. New J. Phys. 19, 113006 (2017).
Weiner, J., Bagnato, V. S., Zilio, S. & Julienne, P. S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999).
Yanay, Y. & Mueller, E. J. Heating from continuous number density measurements in optical lattices. Phys. Rev. A 90, 023611 (2014).
Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101–144 (1998).
Sciolla, B., Poletti, D. & Kollath, C. Two-time correlations probing the dynamics of dissipative many-body quantum systems: aging and fast relaxation. Phys. Rev. Lett. 114, 170401 (2015).
Denschlag, J. H. et al. A Bose–Einstein condensate in an optical lattice. J. Phys. B 35, 3095 (2002).
Rokhsar, D. S. & Kotliar, B. G. Gutzwiller projection for bosons. Phys. Rev. B 44, 10328–10332 (1991).
Krauth, W., Caffarel, M. & Bouchaud, J.-P. Gutzwiller wave function for a model of strongly interacting bosons. Phys. Rev. B 45, 3137–3140 (1992).
Ketterle, W., Durfee, D. S. & Stamper-kurn, D. M. Making, probing and understanding Bose–Einstein condensates. In Proc. International School of Physics Enrico Fermi (eds Inguscio, M. et al.) Vol. 140, 67–176 (1999).
Ockeloen-Korppi, C., Tauschinsky, A., Spreeuw, R. & Whitlock, S. Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010).
Pedri, P. et al. Expansion of a coherent array of Bose–Einstein condensates. Phys. Rev. Lett. 87, 220401 (2001).
Gerbier, F. et al. Expansion of a quantum gas released from an optical lattice. Phys. Rev. Lett. 101, 155303 (2008).
Acknowledgements
We acknowledge fruitful discussions with A. Georges, C. Kollath and J.-S. Bernier. We thank M. Brune, J. Dalibard, R. Lopes, S. Nascimbène and D. Poletti for careful reading of the manuscript. Laboratoire Kastler Brossel is a member of the DIM SIRTEQ of Région Ile-de-France.
Author information
Authors and Affiliations
Contributions
R.B., M.B.A. and A.G. performed the measurements under the supervision of J.B. and F.G. R.B. analysed the data. R.B. and F.G. performed analytical and numerical calculations. All authors participated in the interpretation and discussion of the experimental results and in the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text, Figs. 1–10 and references.
Rights and permissions
About this article
Cite this article
Bouganne, R., Bosch Aguilera, M., Ghermaoui, A. et al. Anomalous decay of coherence in a dissipative many-body system. Nat. Phys. 16, 21–25 (2020). https://doi.org/10.1038/s41567-019-0678-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-019-0678-2
This article is cited by
-
Fermi polarons in a driven-dissipative background medium
Science China Physics, Mechanics & Astronomy (2022)
-
Quantum Zeno effects across a parity-time symmetry breaking transition in atomic momentum space
npj Quantum Information (2021)
-
Entropy linear response theory with non-Markovian bath
Journal of High Energy Physics (2021)
-
Non-Hermitian linear response theory
Nature Physics (2020)