Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vibrational spectroscopy at atomic resolution with electron impact scattering


Atomic vibrations control all thermally activated processes in materials, including diffusion, heat transport, phase transformations and surface chemistry. Recent developments in scanning transmission electron microscopy (STEM) have enabled nanoscale probing of vibrational modes using electron energy-loss spectroscopy (EELS)1,2. Although atomically resolved analysis is routine in STEM, vibrational spectroscopy employing oscillating dipoles yields signals originating from regions tens of nanometres in size, because the scattering angles are only a few microradians3. Recently, it has been shown that energy-filtered images recorded at high scattering angles display atomic resolution4. Here we show, using conventional on-axis EELS, that non-dipole, impact scattering vibrational signals are present, and exhibit atomic resolution. This on-axis signal shows variations in the spectral peak shape and intensity as the electron probe is scanned across an individual atomic column in a Si sample. Although atomic spatial resolution in coherent elastic scattering will complicate the quantitative interpretation of spectra from crystals, the change in peak shape provides compelling evidence that the vibrational EELS excitation process is highly localized. High spatial resolution is also demonstrated in SiO2, an amorphous polar material. Our approach represents an important technical advance that will provide new insights into the local thermal, elastic and kinetic properties of materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acquisition geometry and vibrational spectra from silicon.
Fig. 2: Background subtracted spectra and linescan for large collection angle data.
Fig. 3: Background subtracted spectra and linescans for small collection angle data.
Fig. 4: High-resolution vibrational spectroscopy in SiO2.

Data availability

The experimental linescans and simultaneously acquired ADF signals analysed in this work have been uploaded to the Figshare repository. The data can be found at Files have been uploaded in the easily readable 32-bit.tif image format. The data represented in Figs. 1b, 2c,d, 3b,c and 4a,c are available as Supplementary information files.

Code availability

All of the MATLAB codes used to analyse the data are uploaded to B.D.A.L.’s GitHub page ( under the repository titled ‘Background-Modelling-EELS-MATLAB-Code’.


  1. Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article  ADS  Google Scholar 

  2. Miyata, T. et al. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy–electron energy loss spectroscopy. Microscopy 63, 377–382 (2014).

    Article  Google Scholar 

  3. Rez, P. Is localized infrared spectroscopy now possible in the electron microscope? Microsc. Microanal. 20, 671–677 (2014).

    Article  ADS  Google Scholar 

  4. Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    Article  ADS  Google Scholar 

  5. Lagos, M. J., Trugler, A., Hohenester, U. & Batson, P. E. Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017).

    Article  ADS  Google Scholar 

  6. Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    Article  ADS  Google Scholar 

  7. Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 09590 (2018).

    Article  Google Scholar 

  8. Lagos, M. J. & Batson, P. E. Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett. 18, 4556–4563 (2018).

    Article  ADS  Google Scholar 

  9. Hage, F. S. et al. Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv. 4, eaar7495 (2018).

    Article  ADS  Google Scholar 

  10. Jokisaari, J. R. et al. Vibrational spectroscopy of water with high spatial resolution. Adv. Mater. 30, 1802702 (2018).

    Article  Google Scholar 

  11. Rez, P. et al. Damage-free vibrational spectroscopy of biological materials in the electron microscope. Nat. Commun. 7, 10945 (2016).

    Article  ADS  Google Scholar 

  12. Haiber, D. & Crozier, P. A. Nanoscale probing of local hydrogen heterogeneity in disordered carbon nitrides with vibrational EELS. ACS Nano 12, 5463–5472 (2018).

    Article  Google Scholar 

  13. Crozier, P. A., Aoki, T. & Liu, Q. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy. Ultramicroscopy 169, 30–36 (2016).

    Article  Google Scholar 

  14. Egerton, R. F. Prospects for vibrational-mode EELS with high spatial resolution. Microsc. Microanal. 20, 658–663 (2014).

    Article  ADS  Google Scholar 

  15. Forbes, B. D. & Allen, L. J. Modeling energy-loss spectra due to phonon excitation. Phys. Rev. B 94, 014110 (2016).

    Article  ADS  Google Scholar 

  16. Dwyer, C. Localization of high-energy electron scattering from atomic vibrations. Phys. Rev. B 89, 054103 (2014).

    Article  ADS  Google Scholar 

  17. Rez, P. Does phonon scattering give high-resolution images? Ultramicroscopy 52, 260–266 (1993).

    Article  Google Scholar 

  18. Hohenester, U., Trügler, A., Batson, P. E. & Lagos, M. J. Inelastic vibrational bulk and surface losses of swift electrons in ionic nanostructures. Phys. Rev. B 97, 165418 (2018).

    Article  ADS  Google Scholar 

  19. Spence, J. C. H. High Resolution Electron Microscopy 3rd edn (Oxford Science Publications, 2003).

  20. Cowley, J. M. Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969).

    Article  ADS  Google Scholar 

  21. Ibach, H. & Mills, D. L. Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, 1982).

  22. Crozier, P. A. Vibrational and valence aloof beam EELS: a potential tool for nondestructive characterization of nanoparticle surfaces. Ultramicroscopy 180, 104–114 (2017).

    Article  Google Scholar 

  23. Venkatraman, K., Rez, P., March, K. & Crozier, P. A. The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2. Microscopy 67, i14–i23 (2018).

    Article  Google Scholar 

  24. Dwyer, C. et al. Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117, 256101 (2016).

    Article  ADS  Google Scholar 

  25. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  ADS  Google Scholar 

  26. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

  27. Dolling, G. Lattice Vibrations in Crystals with the Diamond Structure (Atomic Energy of Canada Ltd, 1962).

  28. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (W.B. Saunders Company, 1976).

  29. Kulda, J., Strauch, D., Pavone, P. & Ishii, Y. Inelastic-neutron-scattering study of phonon eigenvectors and frequencies in Si. Phys. Rev. B 50, 13347 (1994).

    Article  ADS  Google Scholar 

  30. Haworth, R., Mountjoy, G., Corno, M., Ugliengo, P. & Newport, R. J. Probing vibrational modes in silica glass using inelastic neutron scattering with mass contrast. Phys. Rev. B 81, 060301 (2010).

    Article  ADS  Google Scholar 

  31. Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012).

    Article  ADS  Google Scholar 

  32. Zhu, J. T., Crozier, P. A., Ercius, P. & Anderson, J. R. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy. Microsc. Microanal. 20, 748–759 (2014).

    Article  ADS  Google Scholar 

  33. Hall, M., Veeraraghavan, V., Rubin, H. & Winchell, P. The approximation of symmetric X-ray peaks by Pearson type VII distributions. J. Appl. Crystallogr. 10, 66–68 (1977).

    Article  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  36. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  Google Scholar 

  37. Amali, A. & Rez, P. Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997).

    Article  ADS  Google Scholar 

Download references


Financial support for K.V., B.D.A.L., P.R. and P.A.C. was provided by the US National Science Foundation (grant no. CHE-1508667) and for B.D.A.L. and P.A.C. by the US Department of Energy (grant no. DE-SC0004954). We also acknowledge the use of (S)TEM at John M. Cowley Center for High Resolution Electron Microscopy in the Eyring Materials Center at Arizona State University. P.A.C. acknowledges stimulating discussions on atomic-resolution vibrational spectroscopy with L. Allen. We acknowledge assistance from A. Singh in the use of Phonopy.

Author information

Authors and Affiliations



K.V. prepared samples. K.V. and K.M. acquired all experimental vibrational EELS data. B.D.A.L. developed software for spectral processing. K.V. and B.D.A.L. analysed the EELS results. B.D.A.L. performed simulations of convergent beam electron diffraction (CBED) patterns. K.V. performed dielectric theory simulations. P.R. developed and interpreted phonon models. P.A.C. and P.R. initiated the project and were involved in extensive discussions on the interpretation of the results. All authors were active in writing the manuscript.

Corresponding author

Correspondence to Peter A. Crozier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Robert Klie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and references.

Source data

Source Data

Fig 1b_UpperPanel

Source Data

Fig 1b_LowerPanel

Source Data


Source Data

Fig 2c_2_OffColumn

Source Data

Fig 2c_3_OnColumn

Source Data

Fig 2d

Source Data

Fig 3b

Source Data

Fig 3c

Source Data

Fig 4a

Source Data

Fig 4c

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, K., Levin, B.D.A., March, K. et al. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing