Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light emission based on nanophotonic vacuum forces

Abstract

The vanishingly small response of matter to light above ultraviolet frequencies makes the manipulation of light emission at such frequencies challenging. As a result, state-of-the-art sources of high-frequency light are typically active, relying on strong external electromagnetic fields. Here, we present a fundamental mechanism of light emission that is fully passive, relying instead on vacuum fluctuations near nanophotonic structures. This mechanism can be used to generate light at any frequency, including high-frequency radiation such as X-rays. The proposed mechanism is equivalent to a quantum optical two-photon process, in which a free electron spontaneously emits a low-energy polariton and a high-energy photon simultaneously. Although two-photon processes are nominally weak, we find that the resulting X-ray radiation can be substantial. The strength of this process is related to the strong Casimir–Polder forces that atoms experience in the nanometre vicinity of materials, with the essential difference being that the fluctuating force here acts on a free electron, rather than a neutral, polarizable atom. The light emission can be shaped by controlling the nanophotonic geometry or the underlying material electromagnetic response at optical or infrared frequencies. Our results reveal ways of applying the tools of nanophotonics even at frequencies where materials have an insubstantial electromagnetic response. The process we study, when scaled up, may also enable new concepts for compact and tunable X-ray radiation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Light emission induced by nanophotonic vacuum fluctuations and spontaneous emission of a photon–polariton pair.
Fig. 2: Influence of optical materials on the photon emission spectrum in photon–polariton pair emission.
Fig. 3: Correlations between emitted infrared polaritons and emitted X-ray photons in photon–polariton pair emission.
Fig. 4: Total emitted power due to nanoplasmonic vacuum fluctuations.

Data availability

The data represented in Figs. 24 are available as Supplementary information files. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Dirac, P. A. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).

    MATH  Article  ADS  Google Scholar 

  2. 2.

    Lamb, W. E. Jr & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

    Article  ADS  Google Scholar 

  3. 3.

    Lifshitz, E. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956).

    Google Scholar 

  4. 4.

    Sandoghdar, V., Sukenik, C., Hinds, E. & Haroche, S. Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432–3435 (1992).

    Article  ADS  Google Scholar 

  5. 5.

    Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001).

    Article  ADS  Google Scholar 

  6. 6.

    Pendry, J. Shearing the vacuum-quantum friction. J. Phys. Condens. Matter 9, 10301–10320 (1997).

    Article  ADS  Google Scholar 

  7. 7.

    Johansson, J. R., Johansson, G., Wilson, C. & Nori, F. Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009).

    Article  ADS  Google Scholar 

  8. 8.

    Nation, P., Johansson, J., Blencowe, M. & Nori, F. Colloquium: Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012).

    Article  ADS  Google Scholar 

  9. 9.

    Fulling, S. A. Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850–2862 (1973).

    Article  ADS  Google Scholar 

  10. 10.

    Davies, P. C. Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975).

    Article  ADS  Google Scholar 

  11. 11.

    Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976).

    Article  ADS  Google Scholar 

  12. 12.

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2011).

  13. 13.

    Basov, D., Fogler, M. & de Abajo, F. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  14. 14.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  Google Scholar 

  15. 15.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  16. 16.

    Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981).

    Article  ADS  Google Scholar 

  17. 17.

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  18. 18.

    Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    Article  ADS  Google Scholar 

  19. 19.

    De Abajo, F. G. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  ADS  Google Scholar 

  20. 20.

    Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012).

    Article  ADS  Google Scholar 

  21. 21.

    Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    Article  Google Scholar 

  22. 22.

    Rivera, N., Wong, L. J., Soljačić, M. & Kaminer, I. Ultrafast multiharmonic plasmon generation by optically dressed electrons. Phys. Rev. Lett. 122, 053901 (2019).

    Article  ADS  Google Scholar 

  23. 23.

    Pendry, J. Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621–6633 (1999).

    Article  ADS  Google Scholar 

  24. 24.

    Volokitin, A. & Persson, B. N. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

    Article  ADS  Google Scholar 

  25. 25.

    Reid, M. H., Rodriguez, A. W., White, J. & Johnson, S. G. Efficient computation of Casimir interactions between arbitrary 3D objects. Phys. Rev. Lett. 103, 040401 (2009).

    Article  ADS  Google Scholar 

  26. 26.

    Otey, C. R. et al. Thermal rectification through vacuum. Phys. Rev. Lett. 104, 154301 (2010).

    Article  ADS  Google Scholar 

  27. 27.

    Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photon. 5, 211–221 (2011).

    Article  ADS  Google Scholar 

  28. 28.

    Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009).

    Article  ADS  Google Scholar 

  29. 29.

    Rousseau, E. et al. Radiative heat transfer at the nanoscale. Nat. Photon. 3, 514–517 (2009).

    Article  ADS  Google Scholar 

  30. 30.

    Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015).

    Article  ADS  Google Scholar 

  31. 31.

    Jackson, J. D. Classical Electrodynamics (Wiley, 1999).

  32. 32.

    Friedman, A., Gover, A., Kurizki, G., Ruschin, S. & Yariv, A. Spontaneous and stimulated emission from quasifree electrons. Rev. Mod. Phys. 60, 471–535 (1988).

    Article  ADS  Google Scholar 

  33. 33.

    Ginsburg, V. Applications of Electrodynamics in Theoretical Physics and Astrophysics (Routledge, 1989).

  34. 34.

    Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  35. 35.

    Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2016).

    Article  ADS  Google Scholar 

  36. 36.

    Rosolen, G. et al. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl. 7, 64 (2018).

    Article  ADS  Google Scholar 

  37. 37.

    Feranchuk, I. & Ivashin, A. Theoretical investigation of the parametric X-ray features. J. Phys. 46, 1981–1986 (1985).

    Article  Google Scholar 

  38. 38.

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  39. 39.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  40. 40.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  41. 41.

    Iranzo, D. A. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  Google Scholar 

  42. 42.

    Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  ADS  Google Scholar 

  43. 43.

    Göppert-Mayer, M. Über elementarakte mit zwei quantensprüngen. Ann. Phys. 401, 273–294 (1931).

    MATH  Article  Google Scholar 

  44. 44.

    Cesar, C. L. et al. Two-photon spectroscopy of trapped atomic hydrogen. Phys. Rev. Lett. 77, 255–258 (1996).

    Article  ADS  Google Scholar 

  45. 45.

    Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photon. 2, 238–241 (2008).

    Article  Google Scholar 

  46. 46.

    Nevet, A. et al. Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors. Nano Lett. 10, 1848–1852 (2010).

    Article  ADS  Google Scholar 

  47. 47.

    Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  48. 48.

    Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl. Acad. Sci. USA 114, 13607–13612 (2017).

    Article  ADS  Google Scholar 

  49. 49.

    Frank, I. Optics of light sources moving in refractive media. Science 131, 702–712 (1960).

    Article  ADS  Google Scholar 

  50. 50.

    Batygin, V. On the possibility of hard Vavilov–Cerenkov radiation. Sov. Phys. JETP 21, 179–180 (1965).

    ADS  Google Scholar 

  51. 51.

    Batygin, V. & Kuz’menko, K. Quantum theory of Vavilov–Cerenkov radiation by an electron traveling in vacuum parallel to a dielectric surface. Sov. Phys. JETP 68, 437–440 (1975).

    ADS  Google Scholar 

  52. 52.

    Goldstein, J. I. et al. Scanning Electron Microscopy and X-ray Microanalysis (Springer, 2017).

  53. 53.

    England, R. J. et al. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014).

    Article  ADS  Google Scholar 

  54. 54.

    Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    Article  ADS  Google Scholar 

  55. 55.

    Boltasseva, A. & Shalaev, V. M. Transdimensional photonics. ACS Photon. 6, 1–3 (2019).

    Article  Google Scholar 

  56. 56.

    Naik, G. V. et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2, 478–489 (2012).

    Article  ADS  Google Scholar 

  57. 57.

    Rodriguez, A. W., Reid, M. H. & Johnson, S. G. Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Phys. Rev. B 86, 220302 (2012).

    Article  ADS  Google Scholar 

  58. 58.

    Freund, I. & Levine, B. Parametric conversion of X-rays. Phys. Rev. Lett. 23, 854–857 (1969).

    Article  ADS  Google Scholar 

  59. 59.

    Eisenberger, P. & McCall, S. X-ray parametric conversion. Phys. Rev. Lett. 26, 684–688 (1971).

    Article  ADS  Google Scholar 

  60. 60.

    Glover, T. et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).

    Article  ADS  Google Scholar 

  61. 61.

    Rytov, S., Kravtsov, Y. A. & Tatarskii, V. Principles of Statistical Radiophysics. 3. Elements of Random Fields (Springer, 1989).

  62. 62.

    Scheel, S. & Buhmann, S. Macroscopic quantum electrodynamics-concepts and applications. Acta Phys. Slov. 58, 675–809 (2008).

    ADS  Google Scholar 

  63. 63.

    Lifshitz, E. M. & Pitaevskii, L. P. Statistical Physics: Theory of the Condensed State Vol. 9 (Elsevier, 2013).

Download references

Acknowledgements

We thank T. Christensen and G. Rosolen for helpful discussions. This research was supported by the Binational USA-Israel Science Foundation (BSF). N.R. was supported by Department of Energy Fellowship DE-FG02-97ER25308. L.J.W. was supported by the Advanced Manufacturing and Engineering Young Individual Research Grant (no. A1984c0043) from the Science and Engineering Research Council of the Agency for Science, Technology and Research, Singapore. This work was also partly supported by the Army Research Office through the Institute for Soldier Nanotechnologies under contract no. W911NF-18-2-0048. This work was also supported in part by the MRSEC Program of the National Science Foundation under award number DMR – 1419807. I.K. was also supported by a Starter Grant from the European Research Council and by the Israel Science Foundation.

Author information

Affiliations

Authors

Contributions

N.R. led the work with substantial input from all other authors.

Corresponding authors

Correspondence to Nicholas Rivera or Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Frank Koppens and Kimball Milton for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, additional discussion and supplementary references.

Figure 2 data

Source data for Fig. 2.

Figure 3 data

Source data for Fig. 3.

Figure 4 data

Source data for Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rivera, N., Wong, L.J., Joannopoulos, J.D. et al. Light emission based on nanophotonic vacuum forces. Nat. Phys. 15, 1284–1289 (2019). https://doi.org/10.1038/s41567-019-0672-8

Download citation

Further reading

Search

Quick links