Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum-critical phase from frustrated magnetism in a strongly correlated metal


Strange-metal phenomena often develop at the border of antiferromagnetic order in strongly correlated metals1. Previous work established that they can originate from the fluctuations anchored by the quantum-critical point associated with a continuous quantum phase transition out of the antiferromagnetic order2,3,4. What is still unclear is how these phenomena can be associated with a potential new phase of matter at zero temperature. Here, we show that magnetic frustration of the 4f local moments in the distorted kagome intermetallic compound cerium palladium aluminium gives rise to such a paramagnetic quantum-critical phase. Our discovery motivates a design principle for strongly correlated metallic states with unconventional excitations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Results at zero field illustrating the emerging quantum-critical phase.
Fig. 2: Pressure dependence of ρ(T, B = 0) as a measure of the quantum-critical strength within the quantum-critical phase.
Fig. 3: NFL behaviour studied at combined control parameters of magnetic field and hydrostatic pressure.
Fig. 4: Experimental pB and schematic global GJK/I phase diagrams at zero temperature.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author P.S. upon reasonable request.


  1. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  Google Scholar 

  2. Coleman, P. & Schofield, A. Quantum criticality. Nature 433, 226–229 (2005).

    Article  ADS  Google Scholar 

  3. von Lőhneysen, H., Rosch, A., Vojta, M. & Wőlfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  4. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    Article  Google Scholar 

  5. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  6. Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nat. Mater. 13, 356–359 (2014).

    Article  ADS  Google Scholar 

  7. Tokiwa, Y., Stingl, C., Kim, M.-S., Takabatake, T. & Gegenwart, P. Characteristic signatures of quantum criticality driven by geometrical frustration. Sci. Adv. 1, e1500001 (2015).

    Article  ADS  Google Scholar 

  8. Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Phys. B 378–380, 23–27 (2006).

    Article  ADS  Google Scholar 

  9. Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Stat. Sol. B 247, 476–484 (2010).

    Article  ADS  Google Scholar 

  10. Coleman, P. & Nevidomskyy, A. H. Frustration and the Kondo effect in heavy fermion materials. J. Low Temp. Phys. 161, 182–202 (2010).

    Article  ADS  Google Scholar 

  11. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    Article  ADS  Google Scholar 

  12. Doniach, S. Kondo lattice and weak antiferromagnetism. Phys. B 91, 231–234 (1977).

    Article  Google Scholar 

  13. Friedemann, S. et al. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2. Nat. Phys. 5, 465–469 (2009).

    Article  Google Scholar 

  14. Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2. Phys. Rev. Lett. 104, 186402 (2010).

    Article  ADS  Google Scholar 

  15. Zhao, H. C. et al. Temperature-field phase diagram of geometrically frustrated CePdAl. Phys. Rev. B 94, 235131 (2016).

    Article  ADS  Google Scholar 

  16. Lucas, S. et al. Entropy evolution in the magnetic phases of partially frustrated CePdAl. Phys. Rev. Lett. 118, 107204 (2017).

    Article  ADS  Google Scholar 

  17. Dolores Núñez-Regueiro, M., Lacroix, C. & Canals, B. Magnetic ordering in the frustrated Kondo lattice compound CePdAl. Phys. C 282–287, 1885–1886 (1997).

    Article  Google Scholar 

  18. Zhang, J. H. et al. Kondo destruction in a quantum paramagnet with magnetic frustration. Phys. Rev. B 97, 235117 (2018).

    Article  ADS  Google Scholar 

  19. Goto, T., Hane, S., Umeo, K., Takabatake, T. & Isikawa, Y. Field-induced magnetic transitions and pressure-induced magnetic instability in CePdAl. J. Phys. Chem. Solids 63, 1159–1163 (2002).

    Article  ADS  Google Scholar 

  20. Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  ADS  Google Scholar 

  21. Coleman, P., Pepin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, 723–738 (2001).

    Article  ADS  Google Scholar 

  22. Gegenwart, P. et al. Magnetic-field induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 89, 056402 (2002).

    Article  ADS  Google Scholar 

  23. Fritsch, V. et al. Approaching quantum criticality in a partially geometrically frustrated heavy-fermion metal. Phys. Rev. B 89, 054416 (2014).

    Article  ADS  Google Scholar 

  24. Sakai, A. et al. Signature of frustrated moments in quantum critical CePd1− xNixAl. Phys. Rev. B 94, 220405 (2016).

    Article  ADS  Google Scholar 

  25. Tomita, T., Kuga, K., Uwatoko, Y., Coleman, P. & Nakatsuji, S. Strange metal without magnetic criticality. Science 349, 506–509 (2015).

    Article  ADS  Google Scholar 

  26. Oike, H., Miyagawa, K., Taniguchi, H. & Kanoda, K. Pressure-induced Mott transition in an organic superconductor with a finite doping level. Phys. Rev. Lett. 114, 067002 (2015).

    Article  ADS  Google Scholar 

  27. Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article  ADS  Google Scholar 

  28. Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

    Article  ADS  Google Scholar 

  29. Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. USA 107, 14547–14551 (2010).

    Article  ADS  Google Scholar 

  30. Custers, J. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. Nat. Mater. 11, 189–194 (2012).

    Article  ADS  Google Scholar 

  31. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article  ADS  Google Scholar 

  32. Küchler, R. et al. Uniaxial stress tuning of geometrical frustration in a Kondo lattice. Phys. Rev. B 96, 241110 (2017).

    Article  ADS  Google Scholar 

  33. Pixley, J. H., Yu, R. & Si, Q. Quantum phases of the Shastry–Sutherland Kondo lattice: implications for the global phase diagram of heavy-fermion metals. Phys. Rev. Lett. 113, 176402 (2014).

    Article  ADS  Google Scholar 

  34. Ramires, A. & Coleman, P. Supersymmetric approach to heavy fermion systems. Phys. Rev. B 93, 035120 (2016).

    Article  ADS  Google Scholar 

  35. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

Download references


This work was supported by the Ministry of Science and Technology of China (grant nos 2017YFA0303100, 2015CB921303 and 2018YFA0305702), the National Natural Science Foundation of China (grant nos 11774404, 11474332, 11574377 and 11874400), the Chinese Academy of Sciences (grant nos XDB07020200, XDB25000000 and QYZDB-SSW-SLH013) and a fund from the Science and Technology on Surface Physics and Chemistry Laboratory (no. 01040117). Work at Augsburg was supported by the German Research Foundation (DFG) under the auspices of TRR 80 (no. 107745057), while work at Dresden was partly supported by the DFG Research Unit 960. The work at Rice University was supported in part by the NSF grant DMR-1920740 and the Robert A. Welch Foundation grant C-1411. Q.S. acknowledges the hospitality and support by a Ulam Scholarship from the Center for Nonlinear Studies at Los Alamos National Laboratory and the hospitality of the Aspen Center for Physics (NSF, PHY-1607611).

Author information

Authors and Affiliations



P.S. and F.S. initiated the project; H.Z., J.Z., M.L. and P.S. performed the transport and susceptibility measurements under pressure; S.B., Y.T., P.G., S.Z. and G.C. performed the heat capacity measurements; J.C. calibrated the pressure cell and performed preliminary transport measurements under pressure; Y.I. prepared and oriented the single crystals; H.Z., J.Z., Y.Y., Q.S., F.S. and P.S. discussed the results and analysed the data; P.S., F.S. and Q.S. wrote the manuscript; all authors revised and approved the manuscript.

Corresponding authors

Correspondence to Qimiao Si, Frank Steglich or Peijie Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Kazushi Kanoda, Gregory Stewart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, J., Lyu, M. et al. Quantum-critical phase from frustrated magnetism in a strongly correlated metal. Nat. Phys. 15, 1261–1266 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing