Magnetic fields alter strong-field ionization

Article metrics


When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum to the electron and its parent ion. The sharing of the photon momentum between the two particles and its underlying mechanism in strong-field ionization, occurring when the bound electron tunnels through the barrier created by the superposition of the atomic potential and the electric laser field, are still debated in theory1,2,3,4 after 30 years of research. Corresponding experiments are very challenging due to the extremely small photon momentum and their precision has been too limited, so far, to ultimately resolve this debate5,6,7,8. By utilizing an experimental approach relying on two counter-propagating laser pulses, we present a detailed study of the effects of the photon momentum in strong-field ionization. The high precision of the method and the intrinsically known zero momentum allow us to unambiguously demonstrate the action of the light’s magnetic field on the electron while it is under the tunnel barrier, which has only been theoretically predicted so far1,2,3,9, thereby disproving opposing predictions5,10,11. Our results deepen the understanding of, for example, molecular imaging12,13 and time-resolved photoelectron holography14.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental scheme.
Fig. 2: Results for circularly polarized light.
Fig. 3: Results for linearly polarized light.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code that supports the theoretical plots within this paper and other findings of this study is available from the corresponding authors upon reasonable request.


  1. 1.

    Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption. Phys. Rev. Lett. 113, 263005 (2014).

  2. 2.

    Klaiber, M., Yakaboylu, E., Bauke, H., Hatsagortsyan, K. Z. & Keitel, C. H. Under-the-barrier dynamics in laser-induced relativistic tunneling. Phys. Rev. Lett. 110, 153004 (2013).

  3. 3.

    He, P.-L., Lao, D. & He, F. Strong field theories beyond dipole approximations in nonrelativistic regimes. Phys. Rev. Lett. 118, 163203 (2017).

  4. 4.

    Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon-momentum transfer in multiphoton ionization and in time-resolved holography with photoelectrons. Phys. Rev. A 92, 051401 (2015).

  5. 5.

    Smeenk, C. T. L. et al. Partitioning of the linear photon momentum in multiphoton ionization. Phys. Rev. Lett. 106, 193002 (2011).

  6. 6.

    Ludwig, A. et al. Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014).

  7. 7.

    Maurer, J. et al. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime. Phys. Rev. A 97, 013404 (2018).

  8. 8.

    Willenberg, B., Maurer, J., Mayer, B. W. & Keller, U. Sub-cycle time resolution of multi-photon momentum transfer in strong-field ionization. Preprint at (2019).

  9. 9.

    Yakaboylu, E., Klaiber, M., Bauke, H., Hatsagortsyan, K. & H. Keitel, C. Relativistic features and time delay of laser-induced tunnel-ionization. Phys. Rev. A 88, 063421 (2013).

  10. 10.

    Titi, A. S. & Drake, G. W. F. Quantum theory of longitudinal momentum transfer in above-threshold ionization. Phys. Rev. A 85, 041404 (2012).

  11. 11.

    Reiss, H. R. Relativistic effects in nonrelativistic ionization. Phys. Rev. A 87, 033421 (2013).

  12. 12.

    Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

  13. 13.

    Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

  14. 14.

    Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

  15. 15.

    McPherson, A. et al. Studies of multiphoton production of vacuum–ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

  16. 16.

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

  17. 17.

    Pisanty, E. et al. High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields. New J. Phys. 20, 053036 (2018).

  18. 18.

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

  19. 19.

    Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

  20. 20.

    Ivanov, I. A., Dubau, J. & Kim, K. T. Nondipole effects in strong-field ionization. Phys. Rev. A 94, 033405 (2016).

  21. 21.

    Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon-momentum transfer in photoionization: from few photons to many. Phys. Rev. A 95, 053402 (2017).

  22. 22.

    Brennecke, S. & Lein, M. High-order above-threshold ionization beyond the electric dipole approximation. J. Phys. B 51, 094005 (2018).

  23. 23.

    Keil, T. & Bauer, D. Coulomb-corrected strong-field quantum trajectories beyond dipole approximation. J. Phys. B 50, 194002 (2017).

  24. 24.

    Brennecke, S. & Lein, M. High-order above-threshold ionization beyond the electric dipole approximation: dependence on the atomic and molecular structure. Phys. Rev. A 98, 063414 (2018).

  25. 25.

    Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

  26. 26.

    Daněk, J. et al. Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization. J. Phys. B 51, 114001 (2018).

  27. 27.

    Xia, Q. Z., Tao, J. F., Cai, J., Fu, L. B. & Liu, J. Quantum interference of glory rescattering in strong-field atomic ionization. Phys. Rev. Lett. 121, 143201 (2018).

  28. 28.

    Brennecke, S. & Lein, M. Strong-field photoelectron holography beyond the electric dipole approximation: A semiclassical analysis. Phys. Rev. A 100, 023413 (2019).

  29. 29.

    Eckart, S. et al. Direct experimental access to the nonadiabatic initial momentum offset upon tunnel ionization. Phys. Rev. Lett. 121, 163202 (2018).

  30. 30.

    Emmanouilidou, A., Meltzer, T. & Corkum, P. B. Non-dipole recollision-gated double ionization and observable effects. J. Phys. B 50, 225602 (2017).

  31. 31.

    Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U. & Sandner, W. Strong-field tunneling without ionization. Phys. Rev. Lett. 101, 233001 (2008).

  32. 32.

    de Boer, M. P., Hoogenraad, J. H., Vrijen, R. B., Noordam, L. D. & Muller, H. G. Indications of high-intensity adiabatic stabilization in neon. Phys. Rev. Lett. 71, 3263–3266 (1993).

  33. 33.

    Diesen, E. et al. Dynamical characteristics of Rydberg electrons released by a weak electric field. Phys. Rev. Lett. 116, 143006 (2016).

  34. 34.

    Fechner, L. et al. Creation and survival of autoionizing states in strong laser fields. Phys. Rev. A 92, 051403 (2015).

  35. 35.

    Lein, M., Gross, E. K. U. & Engel, V. Intense-field double ionization of helium: identifying the mechanism. Phys. Rev. Lett. 85, 4707–4710 (2000).

  36. 36.

    Tong, X. M. & Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B 38, 2593–2600 (2005).

  37. 37.

    Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

  38. 38.

    Gallagher, T. F. Above-threshold ionization in low-frequency limit. Phys. Rev. Lett. 61, 2304–2307 (1988).

  39. 39.

    Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).

Download references


A.H., K.F. and K.H. acknowledge support by the German National Merit Foundation. We acknowledge support from Deutsche Forschungsgemeinschaft via Sonderforschungsbereich 1319 (ELCH) and by the DFG Priority Programme ‘Quantum Dynamics in Tailored Intense Fields’.

Author information

A.H., S.E., J.R., D.T., K.F., M.R., H.S., S.Z., K.H., G.K., J.H., A.K., M.S., T.J., L.Ph.H.S., M.K. and R.D. contributed to the experimental work. S.B. and M.L. contributed to theory and the numerical simulations. All authors contributed to the manuscript.

Correspondence to A. Hartung or R. Dörner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Alexandra Landsman, Catherina Vozzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark