Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic fields alter strong-field ionization

Abstract

When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum to the electron and its parent ion. The sharing of the photon momentum between the two particles and its underlying mechanism in strong-field ionization, occurring when the bound electron tunnels through the barrier created by the superposition of the atomic potential and the electric laser field, are still debated in theory1,2,3,4 after 30 years of research. Corresponding experiments are very challenging due to the extremely small photon momentum and their precision has been too limited, so far, to ultimately resolve this debate5,6,7,8. By utilizing an experimental approach relying on two counter-propagating laser pulses, we present a detailed study of the effects of the photon momentum in strong-field ionization. The high precision of the method and the intrinsically known zero momentum allow us to unambiguously demonstrate the action of the light’s magnetic field on the electron while it is under the tunnel barrier, which has only been theoretically predicted so far1,2,3,9, thereby disproving opposing predictions5,10,11. Our results deepen the understanding of, for example, molecular imaging12,13 and time-resolved photoelectron holography14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme.
Fig. 2: Results for circularly polarized light.
Fig. 3: Results for linearly polarized light.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code that supports the theoretical plots within this paper and other findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption. Phys. Rev. Lett. 113, 263005 (2014).

    Article  ADS  Google Scholar 

  2. Klaiber, M., Yakaboylu, E., Bauke, H., Hatsagortsyan, K. Z. & Keitel, C. H. Under-the-barrier dynamics in laser-induced relativistic tunneling. Phys. Rev. Lett. 110, 153004 (2013).

    Article  ADS  Google Scholar 

  3. He, P.-L., Lao, D. & He, F. Strong field theories beyond dipole approximations in nonrelativistic regimes. Phys. Rev. Lett. 118, 163203 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  4. Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon-momentum transfer in multiphoton ionization and in time-resolved holography with photoelectrons. Phys. Rev. A 92, 051401 (2015).

    Article  ADS  Google Scholar 

  5. Smeenk, C. T. L. et al. Partitioning of the linear photon momentum in multiphoton ionization. Phys. Rev. Lett. 106, 193002 (2011).

    Article  ADS  Google Scholar 

  6. Ludwig, A. et al. Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014).

    Article  ADS  Google Scholar 

  7. Maurer, J. et al. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime. Phys. Rev. A 97, 013404 (2018).

    Article  ADS  Google Scholar 

  8. Willenberg, B., Maurer, J., Mayer, B. W. & Keller, U. Sub-cycle time resolution of multi-photon momentum transfer in strong-field ionization. Preprint at http://arxiv.org/abs/1905.09546 (2019).

  9. Yakaboylu, E., Klaiber, M., Bauke, H., Hatsagortsyan, K. & H. Keitel, C. Relativistic features and time delay of laser-induced tunnel-ionization. Phys. Rev. A 88, 063421 (2013).

    Article  ADS  Google Scholar 

  10. Titi, A. S. & Drake, G. W. F. Quantum theory of longitudinal momentum transfer in above-threshold ionization. Phys. Rev. A 85, 041404 (2012).

    Article  ADS  Google Scholar 

  11. Reiss, H. R. Relativistic effects in nonrelativistic ionization. Phys. Rev. A 87, 033421 (2013).

    Article  ADS  Google Scholar 

  12. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    Article  ADS  Google Scholar 

  13. Blaga, C. I. et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

    Article  ADS  Google Scholar 

  14. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    Article  ADS  Google Scholar 

  15. McPherson, A. et al. Studies of multiphoton production of vacuum–ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  ADS  Google Scholar 

  16. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  17. Pisanty, E. et al. High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields. New J. Phys. 20, 053036 (2018).

    Article  ADS  Google Scholar 

  18. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  19. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  20. Ivanov, I. A., Dubau, J. & Kim, K. T. Nondipole effects in strong-field ionization. Phys. Rev. A 94, 033405 (2016).

    Article  ADS  Google Scholar 

  21. Chelkowski, S., Bandrauk, A. D. & Corkum, P. B. Photon-momentum transfer in photoionization: from few photons to many. Phys. Rev. A 95, 053402 (2017).

    Article  ADS  Google Scholar 

  22. Brennecke, S. & Lein, M. High-order above-threshold ionization beyond the electric dipole approximation. J. Phys. B 51, 094005 (2018).

    Article  ADS  Google Scholar 

  23. Keil, T. & Bauer, D. Coulomb-corrected strong-field quantum trajectories beyond dipole approximation. J. Phys. B 50, 194002 (2017).

    Article  ADS  Google Scholar 

  24. Brennecke, S. & Lein, M. High-order above-threshold ionization beyond the electric dipole approximation: dependence on the atomic and molecular structure. Phys. Rev. A 98, 063414 (2018).

    Article  ADS  Google Scholar 

  25. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

    Article  ADS  Google Scholar 

  26. Daněk, J. et al. Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization. J. Phys. B 51, 114001 (2018).

    Article  ADS  Google Scholar 

  27. Xia, Q. Z., Tao, J. F., Cai, J., Fu, L. B. & Liu, J. Quantum interference of glory rescattering in strong-field atomic ionization. Phys. Rev. Lett. 121, 143201 (2018).

    Article  ADS  Google Scholar 

  28. Brennecke, S. & Lein, M. Strong-field photoelectron holography beyond the electric dipole approximation: A semiclassical analysis. Phys. Rev. A 100, 023413 (2019).

    Article  ADS  Google Scholar 

  29. Eckart, S. et al. Direct experimental access to the nonadiabatic initial momentum offset upon tunnel ionization. Phys. Rev. Lett. 121, 163202 (2018).

    Article  ADS  Google Scholar 

  30. Emmanouilidou, A., Meltzer, T. & Corkum, P. B. Non-dipole recollision-gated double ionization and observable effects. J. Phys. B 50, 225602 (2017).

    Article  ADS  Google Scholar 

  31. Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U. & Sandner, W. Strong-field tunneling without ionization. Phys. Rev. Lett. 101, 233001 (2008).

    Article  ADS  Google Scholar 

  32. de Boer, M. P., Hoogenraad, J. H., Vrijen, R. B., Noordam, L. D. & Muller, H. G. Indications of high-intensity adiabatic stabilization in neon. Phys. Rev. Lett. 71, 3263–3266 (1993).

    Article  ADS  Google Scholar 

  33. Diesen, E. et al. Dynamical characteristics of Rydberg electrons released by a weak electric field. Phys. Rev. Lett. 116, 143006 (2016).

    Article  ADS  Google Scholar 

  34. Fechner, L. et al. Creation and survival of autoionizing states in strong laser fields. Phys. Rev. A 92, 051403 (2015).

    Article  ADS  Google Scholar 

  35. Lein, M., Gross, E. K. U. & Engel, V. Intense-field double ionization of helium: identifying the mechanism. Phys. Rev. Lett. 85, 4707–4710 (2000).

    Article  ADS  Google Scholar 

  36. Tong, X. M. & Lin, C. D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime. J. Phys. B 38, 2593–2600 (2005).

    Article  ADS  Google Scholar 

  37. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  ADS  Google Scholar 

  38. Gallagher, T. F. Above-threshold ionization in low-frequency limit. Phys. Rev. Lett. 61, 2304–2307 (1988).

    Article  ADS  Google Scholar 

  39. Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.H., K.F. and K.H. acknowledge support by the German National Merit Foundation. We acknowledge support from Deutsche Forschungsgemeinschaft via Sonderforschungsbereich 1319 (ELCH) and by the DFG Priority Programme ‘Quantum Dynamics in Tailored Intense Fields’.

Author information

Authors and Affiliations

Authors

Contributions

A.H., S.E., J.R., D.T., K.F., M.R., H.S., S.Z., K.H., G.K., J.H., A.K., M.S., T.J., L.Ph.H.S., M.K. and R.D. contributed to the experimental work. S.B. and M.L. contributed to theory and the numerical simulations. All authors contributed to the manuscript.

Corresponding authors

Correspondence to A. Hartung or R. Dörner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Alexandra Landsman, Catherina Vozzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartung, A., Eckart, S., Brennecke, S. et al. Magnetic fields alter strong-field ionization. Nat. Phys. 15, 1222–1226 (2019). https://doi.org/10.1038/s41567-019-0653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0653-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing