Semimetallic molecular hydrogen at pressure above 350 GPa

Article metrics

Abstract

According to theoretical predictions, insulating molecular hydrogen dissociates and transforms into an atomic metal at pressures P ≈ 370–500 GPa (refs. 1,2,3). In another scenario, the metallization first occurs in the 250–500 GPa pressure range in molecular hydrogen through overlapping of electronic bands4,5,6,7. The calculations are not accurate enough to predict which option is realized. Here, we show that at a pressure of 350–360 GPa and temperatures <200 K, the hydrogen starts to conduct, and that the temperature dependence of the electrical conductivity is typical of a semimetal. The conductivity, measured up to 440 GPa, increases strongly with pressure. Raman spectra, measured up to 480 GPa, indicate that hydrogen remains a molecular solid at pressures up to 440 GPa, while at higher pressures the Raman signal vanishes, probably indicating further transformation to a good molecular metal or to an atomic state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Low-temperature part of the phase diagram of hydrogen.
Fig. 2: Raman scattering from hydrogen taken at T 100 K.
Fig. 3: Electrical resistance of hydrogen at different pressures.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764–770 (1935).

  2. 2.

    Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).

  3. 3.

    McMinis, J. III, Clay, R. C., Lee, D. & Morales, M. A. Molecular to atomic phase transition in hydrogen under high pressure. Phys. Rev. Lett. 114, 105305 (2015).

  4. 4.

    Johnson, K. A. & Ashcroft, N. W. Structure and bandgap closure in dense hydrogen. Nature 403, 632–635 (2000).

  5. 5.

    Rillo, G., Morales, M. A., Ceperley, D. M. & Pierleoni, C. Coupled electron–ion Monte Carlo simulation of hydrogen molecular crystals. J. Chem. Phys. 148, 102314 (2018).

  6. 6.

    Azadi, S., Singh, R. & Kuehne, T. D. Nuclear quantum effects induce metallization of dense solid molecular hydrogen. J. Comput. Chem. 39, 262–268 (2018).

  7. 7.

    Azadi, S., Drummond, N. D. & Foulkes, W. M. C. Nature of the metallization transition in solid hydrogen. Phys. Rev. B 95, 035142 (2017).

  8. 8.

    Azadi, S., Monserrat, B., Foulkes, W. M. C. & Needs, R. J. Dissociation of high-pressure solid molecular hydrogen: a quantum Monte Carlo and anharmonic vibrational study. Phys. Rev. Lett. 112, 165501 (2014).

  9. 9.

    Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1750 (1968).

  10. 10.

    Dias, R. P. & Silvera, I. F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).

  11. 11.

    Y.Geng, H. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extrem. 2, 275–277 (2017).

  12. 12.

    Eremets, M. I., Troyan, I. A. & Drozdov, A. P. Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K. Preprint at https://arXiv.org/abs/1601.04479 (2016).

  13. 13.

    Hazen, R. M., Mao, H. K., Finger, L. W. & Hemley, R. J. Single-crystal x-ray diffraction of n-H2 at high pressure. Phys. Rev. B 36, 3944–3947 (1987).

  14. 14.

    Akahama, Y. I. et al. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B 82, 060101(R) (2010).

  15. 15.

    Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

  16. 16.

    Loubeyre, P., Occelli, F. & LeToullec, R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416, 613–617 (2002).

  17. 17.

    Eremets, M. I., Troyan, I. A., Lerch, P. & Drozdov, A. Infrared study of hydrogen up to 310 GPa at room temperature. High. Press. Res. 33, 377–380 (2013).

  18. 18.

    Lebègue, S. et al. Semimetallic dense hydrogen above 260 GPa. Proc. Natl Acad. Sci. USA 109, 9766–9769 (2012).

  19. 19.

    Zha, C.-S., Liu, Z. & Hemley, R. J. Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett. 108, 146402 (2012).

  20. 20.

    Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Molecular semimetallic hydrogen. Preprint at https://arxiv.org/abs/1708.05217 (2017).

  21. 21.

    Eremets, M. I. & Troyan, I. A. Conductive dense hydrogen. Nat. Mater. 10, 927–931 (2011).

  22. 22.

    Brown, P., Semeniuk, K., Vasiljkovic, A. & MGrosche, F. Pressure-induced semimetal-to-semiconductor transition in bismuth. Phys. Procedia 75, 29–33 (2015).

  23. 23.

    Shimizu, K. Superconducting elements under high pressure. Phys. C 552, 30–33 (2018).

  24. 24.

    Eremets, M. I. et al. Electrical conductivity of Xe at megabar pressures. Phys. Rev. Lett. 85, 2797–2800 (2000).

  25. 25.

    Koufos, A. P. & Papaconstantopoulos, D. A. Pressure-induced insulator to metal transition and superconductivity of the inert gases. J. Supercond. Nov. Magn. 28, 3525–3533 (2015).

  26. 26.

    Ma, Y., Oganov, A. R. & Glass, C. W. Structure of the metallic ζ-phase of oxygen and isosymmetric nature of the ε−ζ-phase transition: ab initio simulations. Phys. Rev. B 76, 064101 (2007).

  27. 27.

    Goncharov, A. F., Gregoryanz, E., Hemley, R. J. & Mao, H. K. Molecular character of the metallic high-pressure phase of oxygen. Phys. Rev. B 68, 100102 (2003).

  28. 28.

    Shimizu, K., Eremets, M. I., Suhara, K. & Amaya, K. Oxygen under high pressure – temperature dependence of electrical resistance. Rev. High. Press. Sci. Technol. 7, 784–786 (1998).

  29. 29.

    Monserrat, B. et al. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett. 120, 255701 (2018).

  30. 30.

    Drummond, N. D. et al. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures. Nat. Commun. 6, 7794 (2015).

  31. 31.

    Cerdeira, F., Dreybrodt, W. & Cardona, M. Resonant Raman scattering in germanium. Solid State Commun. 10, 591–595 (1972).

  32. 32.

    Monserrat, B., Needs, R. J., Gregoryanz, E. & Pickard, C. J. Hexagonal structure of phase III of solid hydrogen. Phys. Rev. B 94, 134101 (2016).

  33. 33.

    Eremets, M. I. Megabar high-pressure cells for Raman measurements. J. Raman Spectrosc. 34, 515–518 (2003).

  34. 34.

    Y. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. C 215, 012195 (2010).

Download references

Acknowledgements

Support provided by the European Research Council under Advanced Grant 267777 is acknowledged. We acknowledge Th. Timusk, V. Kresin, L. Boeri, F. Balakirev, Sh. Mozaffari and D. Graf for helpful discussions and comments. M.I.E. is grateful to the Max Planck community for the invaluable support, and U. Pöschl for the constant encouragement.

Author information

All authors equally contributed to this work. M.I.E. designed the study and wrote the manuscript together with A.P.D.

Correspondence to M. I. Eremets.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Alexander Goncharov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eremets, M.I., Drozdov, A.P., Kong, P.P. et al. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. (2019) doi:10.1038/s41567-019-0646-x

Download citation