Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The physics of cell-size regulation across timescales

Abstract

The size of a cell is determined by a combination of synthesis, self-assembly, incoming matter and the balance of mechanical forces. Such processes operate at the single-cell level, but they are deeply interconnected with cell-cycle progression, resulting in a stable average cell size at the population level. Here, we examine this phenomenon by reviewing the physics of growth processes that operate at vastly different timescales, but result in the controlled production of daughter cells that are close copies of their mothers. We first review the regulatory mechanisms of size at short timescales, focusing on the contribution of fundamental physical forces. We then discuss the multiple relevant regulation processes operating on the timescale of the cell cycle. Finally, we look at how these processes interact: one of the most important challenges to date involves bridging the gap between timescales, connecting the physics of cell growth and the biology of cell-cycle progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Factors setting the steady-state cell volume.
Fig. 2: Cell-volume regulation at short and medium timescales.
Fig. 3: Cell-volume regulation at medium and long timescales.
Fig. 4: Illustration of the timescales at play in the regulation of cell-size parameters.

References

  1. 1.

    Miermont, A. et al. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc. Natl Acad. Sci. USA 110, 5725–5730 (2013).

    Article  ADS  Google Scholar 

  2. 2.

    Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).

    Article  Google Scholar 

  3. 3.

    Lecuit, T. & Lenne, P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  Google Scholar 

  4. 4.

    Fischer-Friedrich, E., Hyman, A. A., Jülicher, F., Müller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

    Article  ADS  Google Scholar 

  5. 5.

    Guo, M. et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl Acad. Sci. USA 114, E8618–E8627 (2017).

    Article  Google Scholar 

  6. 6.

    Marshall, W. F. Cell geometry: how cells count and measure size. Annu. Rev. Biophys. 45, 49–64 (2015).

    Article  Google Scholar 

  7. 7.

    Brownlee, C. & Heald, R. Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell 176, 805–815.e8 (2019).

    Article  Google Scholar 

  8. 8.

    Edgar, B. A. How flies get their size: genetics meets physiology. Nat. Rev. Genet. 7, 907–916 (2006).

    Article  Google Scholar 

  9. 9.

    Yu, F.-X., Zhao, B. & Guan, K.-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).

    Article  Google Scholar 

  10. 10.

    Zhou, E. H. et al. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc. Natl Acad. Sci. USA 106, 10632–10637 (2009).

    Article  ADS  Google Scholar 

  11. 11.

    Sachs, F. & Sivaselvan, M. V. Cell volume control in three dimensions: water movement without solute movement. J. Gen. Physiol. 145, 373–80 (2015).

    Article  Google Scholar 

  12. 12.

    Day, R. E. et al. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta 1840, 1492–506 (2014).

    Article  Google Scholar 

  13. 13.

    Kedem, O. & Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958).

    Article  Google Scholar 

  14. 14.

    Solenov, E. I., Baturina, G. S., Katkova, L. E. & Zarogiannis, S. G. Methods to measure water permeability. Adv. Exp. Med. Biol. 969, 263–276 (2017).

    Article  Google Scholar 

  15. 15.

    Ateshian, G. A., Morrison, B., Holmes, J. W. & Hung, C. T. Mechanics of cell growth. Mech. Res. Commun. 42, 118–125 (2012).

    Article  Google Scholar 

  16. 16.

    Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  ADS  Google Scholar 

  17. 17.

    Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).

    Article  Google Scholar 

  18. 18.

    Deng, Y., Sun, M. & Shaevitz, J. W. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158101 (2011).

    Article  ADS  Google Scholar 

  19. 19.

    Nezhad, A. S., Naghavi, M., Packirisamy, M., Bhat, R. & Geitmann, A. Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13, 2599–608 (2013).

    Article  Google Scholar 

  20. 20.

    Ponder, E. The measurement of red‐cell volume. Conductivity measurements. J. Physiol. 85, 439–449 (1935).

    Article  Google Scholar 

  21. 21.

    Essig, A. The ‘pump-leak’ model and exchange diffusion. Biophys. J. 8, 53–63 (1968).

    Article  ADS  Google Scholar 

  22. 22.

    Mori, Y. Mathematical properties of pump-leak models of cell volume control and electrolyte balance. J. Math. Biol. 65, 875–918 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. 23.

    Feranchak, A. P. et al. p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J. Clin. Invest. 108, 1495–1504 (2001).

    Article  Google Scholar 

  24. 24.

    Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

    Article  Google Scholar 

  25. 25.

    Groulx, N., Boudreault, F., Orlov, S. N. & Grygorczyk, R. Membrane reserves and hypotonic cell swelling. J. Membr. Biol. 214, 43–56 (2006).

    Article  Google Scholar 

  26. 26.

    Hui, T. H. et al. Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Phys. Rev. Lett. 113, 118101 (2014).

    Article  ADS  Google Scholar 

  27. 27.

    Zlotek-Zlotkiewicz, E., Monnier, S., Cappello, G., Le Berre, M. & Piel, M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 211, 765–774 (2015).

    Article  Google Scholar 

  28. 28.

    Son, S. et al. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J. Cell Biol. 211, 757–763 (2015).

    Article  Google Scholar 

  29. 29.

    Potočar, U. et al. Adipose-derived stem cells respond to increased osmolarities. PLoS ONE 11, e0163870 (2016).

    Article  Google Scholar 

  30. 30.

    Hoffmann, E. K., Lambert, I. H. & Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277 (2009).

    Article  Google Scholar 

  31. 31.

    Jiang, H. & Sun, S. X. Cellular pressure and volume regulation and implications for cell mechanics. Biophys. J. 105, 609–619 (2013).

    Article  ADS  Google Scholar 

  32. 32.

    Haswell, E. S., Phillips, R. & Rees, D. C. Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356–1369 (2011).

    Article  Google Scholar 

  33. 33.

    Yang, N. J. & Hinner, M. J. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. 1266, 29–53 (2015).

    Article  Google Scholar 

  34. 34.

    Hui, T. H. et al. Regulating the membrane transport activity and death of cells via electroosmotic manipulation. Biophys. J. 110, 2769–2778 (2016).

    Article  ADS  Google Scholar 

  35. 35.

    Roudaut, Y. et al. Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels 6, 234–245 (2012).

    Article  Google Scholar 

  36. 36.

    Wu, J., Lewis, A. H. & Grandl, J. Touch, tension, and transduction—the function and regulation of piezo ion channels. Trends Biochem. Sci. 42, 57–71 (2017).

    Article  Google Scholar 

  37. 37.

    Martinac, B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta 1838, 682–691 (2014).

    Article  Google Scholar 

  38. 38.

    Syeda, R. et al. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499–511 (2016).

    Article  Google Scholar 

  39. 39.

    Sachs, F. Stretch-activated ion channels: what are they? Physiology 25, 50–56 (2010).

    Article  Google Scholar 

  40. 40.

    Han, F., Tucker, A. L., Lingrel, J. B., Despa, S. & Bers, D. M. Extracellular potassium dependence of the Na+-K+-ATPase in cardiac myocytes: isoform specificity and effect of phospholemman. Am. J. Physiol. Cell Physiol. 297, 699–705 (2009).

    Article  Google Scholar 

  41. 41.

    Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474 (2007).

    Article  Google Scholar 

  42. 42.

    Sands, Z., Grottesi, A. & Sansom, M. S. P. Voltage-gated ion channels. Curr. Biol. 15, R44–R47 (2005).

    Article  Google Scholar 

  43. 43.

    Lloyd, A. C. The regulation of cell size. Cell 154, 1194–1205 (2013).

    Article  Google Scholar 

  44. 44.

    Caron, A., Richard, D. & Laplante, M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35, 321–348 (2015).

    Article  Google Scholar 

  45. 45.

    Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  Google Scholar 

  46. 46.

    Son, S. et al. Direct observation of mammalian cell growth and size regulation. Nat. Methods 9, 910–912 (2012).

    Article  Google Scholar 

  47. 47.

    Cadart, C. et al. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat. Commun. 9, 3275 (2018).

    Article  ADS  Google Scholar 

  48. 48.

    Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

    Article  Google Scholar 

  49. 49.

    Osella, M., Nugent, E. & Cosentino Lagomarsino, M. Concerted control of Escherichia coli cell division. Proc. Natl Acad. Sci. USA 111, 3431–3435 (2014).

    Article  ADS  Google Scholar 

  50. 50.

    Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).

    Article  Google Scholar 

  51. 51.

    Reshes, G., Vanounou, S., Fishov, I. & Feingold, M. Cell shape dynamics in Escherichia coli. Biophys. J. 94, 251–264 (2008).

    Article  Google Scholar 

  52. 52.

    Nordholt, N., van Heerden, J. H. & Bruggeman, F. J. Integrated biphasic growth rate, gene expression, and cell-size homeostasis behaviour of single B. subtilis cells. Preprint at https://doi.org/10.1101/510925 (2019).

  53. 53.

    Ferrezuelo, F. et al. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat. Commun. 3, 1012 (2012).

    Article  ADS  Google Scholar 

  54. 54.

    Goranov, A. I. et al. The rate of cell growth is governed by cell cycle stage. Genes Dev. 23, 1408–1422 (2009).

    Article  Google Scholar 

  55. 55.

    Horváth, A., Rácz-Mónus, A., Buchwald, P. & Sveiczer, Á. Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition. FEMS Yeast Res. 13, 635–649 (2013).

    Article  Google Scholar 

  56. 56.

    Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

    Article  ADS  Google Scholar 

  57. 57.

    Sung, Y. et al. Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc. Natl Acad. Sci. USA 110, 16687–16692 (2013).

    Article  ADS  Google Scholar 

  58. 58.

    Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl Acad. Sci. USA 108, 13124–13129 (2011).

    Article  ADS  Google Scholar 

  59. 59.

    Conlon, I. & Raff, M. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2, 7 (2003).

    Article  Google Scholar 

  60. 60.

    Mitchison, J. M. & Nurse, P. Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 75, 357–376 (1985).

    Google Scholar 

  61. 61.

    Baumgärtner, S. & Tolić-Nørrelykke, I. M. Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis. Biophys. J. 96, 4336–4347 (2009).

    Article  ADS  Google Scholar 

  62. 62.

    Goranov, A. I. & Amon, A. Growth and division—not a one-way road. Curr. Opin. Cell Biol. 22, 795–800 (2010).

    Article  Google Scholar 

  63. 63.

    Mitchison, J. M. Growth during the cell cycle. Int. Rev. Cytol. 226, 165–258 (2003).

    Article  Google Scholar 

  64. 64.

    Glazier, D. Metabolic scaling in complex living systems. Systems 2, 451–540 (2014).

    Article  Google Scholar 

  65. 65.

    Miettinen, T. P. & Bjorklund, M. Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev. Cell 39, 370–382 (2016).

    Article  Google Scholar 

  66. 66.

    Kafri, M. et al. The cost of protein production. Cell Rep. 14, 22–31 (2016).

    Article  Google Scholar 

  67. 67.

    Lin, J. & Amir, A. Homeostasis of protein and mRNA concentrations in growing cells. Nat. Commun. 9, 4496 (2018).

    Article  ADS  Google Scholar 

  68. 68.

    Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007).

    Article  ADS  Google Scholar 

  69. 69.

    Schmoller, K. M. & Skotheim, J. M. The biosynthetic basis of cell size control. Trends Cell Biol. 25, 793–802 (2015).

    Article  Google Scholar 

  70. 70.

    Facchetti, G., Chang, F. & Howard, M. Controlling cell size through sizer mechanisms. Curr. Opin. Syst. Biol. 5, 86–92 (2017).

    Article  Google Scholar 

  71. 71.

    Chandler-Brown, D., Schmoller, K. M., Winetraub, Y. & Skotheim, J. M. The adder phenomenon emerges from independent control of pre- and post-start phases of the budding yeast cell cycle. Curr. Biol. 27, 2774–2783.e3 (2017).

    Article  Google Scholar 

  72. 72.

    Dolznig, H., Grebien, F., Sauer, T., Beug, H. & Müllner, E. W. Evidence for a size-sensing mechanism in animal cells. Nat. Cell Biol. 6, 899–905 (2004).

    Article  Google Scholar 

  73. 73.

    Liu, S. et al. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. eLife 7, e26947 (2018).

    Article  Google Scholar 

  74. 74.

    Varsano, G., Wang, Y. & Wu, M. Probing mammalian cell size homeostasis by channel-assisted cell reshaping. Cell Rep. 20, 397–410 (2017).

    Article  Google Scholar 

  75. 75.

    Facchetti, G., Knapp, B., Flor-Parra, I., Chang, F. & Howard, M. Reprogramming Cdr2-dependent geometry-based cell size control in fission yeast. Curr. Biol. 29, 350–358.e4 (2019).

    Article  Google Scholar 

  76. 76.

    Garmendia-Torres, C., Tassy, O., Matifas, A., Molina, N. & Charvin, G. Multiple inputs ensure yeast cell size homeostasis during cell cycle progression. eLife 7, e34025 (2018).

    Article  Google Scholar 

  77. 77.

    Jonas, F., Soifer, I. & Barkai, N. A visual framework for classifying determinants of cell size. Cell Rep. 25, 3519–3529.e2 (2018).

    Article  Google Scholar 

  78. 78.

    Fantes, P. A., Grant, W. D., Pritchard, R. H., Sudbery, P. E. & Wheals, A. E. The regulation of cell size and the control of mitosis. J. Theor. Biol. 50, 213–244 (1975).

    Article  Google Scholar 

  79. 79.

    Soifer, I., Robert, L. & Amir, A. Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Curr. Biol. 26, 356–361 (2016).

    Article  Google Scholar 

  80. 80.

    Schmoller, K., Turner, J. J., Kõivomägi, M. & Skotheim, J. M. Dilution of the cell cycle inhibitor Whi5 controls budding yeast cell size. Nature 526, 268–272 (2015).

    Article  ADS  Google Scholar 

  81. 81.

    Zatulovskiy, E., Berenson, D. F., Topacio, B. R. & Skotheim, J. M. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Preprint at https://doi.org/10.1101/470013 (2018).

  82. 82.

    Sompayrac, L. & Maaløe, O. Autorepressor model for control of DNA replication. Nat. New Biol. 241, 133–135 (1973).

    Article  Google Scholar 

  83. 83.

    Harris, L. K. & Theriot, J. A. Relative rates of surface and volume synthesis set bacterial cell size. Cell 165, 1479–1492 (2016).

    Article  Google Scholar 

  84. 84.

    Zielke, N. et al. Control of Drosophila endocycles by E2F and CRL4CDT2. Nature 480, 123–127 (2011).

    Article  ADS  Google Scholar 

  85. 85.

    Heldt, F. S., Lunstone, R., Tyson, J. J. & Novák, B. Dilution and titration of cell-cycle regulators may control cell size in budding yeast. PLoS Comput. Biol. 14, e1006548 (2018).

    Article  ADS  Google Scholar 

  86. 86.

    Osella, M., Tans, S. J. & Cosentino Lagomarsino, M. Step by step, cell by cell: quantification of the bacterial cell cycle. Trends Microbiol. 25, 250–256 (2017).

    Article  Google Scholar 

  87. 87.

    Tzur, A., Kafri, R., Lebleu, V. S., Lahav, G. & Kirschner, M. W. Cell growth and size homeostasis in proliferating animal cells. Science 325, 167–171 (2009).

    Article  ADS  Google Scholar 

  88. 88.

    Park, K. et al. Measurement of adherent cell mass and growth. Proc. Natl Acad. Sci. USA 107, 20691–20696 (2010).

    Article  ADS  Google Scholar 

  89. 89.

    Ginzberg, M. B. et al. Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. eLife 7, e26947 (2018).

    Article  Google Scholar 

  90. 90.

    Amir, A. Cell size regulation in bacteria. Phys. Rev. Lett. 112, 208102 (2014).

    Article  ADS  Google Scholar 

  91. 91.

    Grilli, J., Osella, M., Kennard, A. S. & Lagomarsino, M. C. Relevant parameters in models of cell division control. Phys. Rev. E 95, 032411 (2017).

    Article  ADS  Google Scholar 

  92. 92.

    Kennard, A. S. et al. Individuality and universality in the growth-division laws of single E. coli cells. Phys. Rev. E 93, 012408 (2016).

    Article  ADS  Google Scholar 

  93. 93.

    Bassetti, F., Epifani, I. & Ladelli, L. Cox Markov models for estimating single cell growth. Electron. J. Stat. 11, 2931–2977 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  94. 94.

    Grilli, J., Cadart, C., Micali, G., Osella, M. & Cosentino Lagomarsino, M. The empirical fluctuation pattern of E. coli division control. Front. Microbiol. 9, 1541 (2018).

    Article  Google Scholar 

  95. 95.

    Micali, G., Grilli, J., Marchi, J., Osella, M. & Cosentino Lagomarsino, M. Dissecting the control mechanisms for DNA replication and cell division in E. coli. Cell Rep. 25, 761–771.e4 (2018).

    Article  Google Scholar 

  96. 96.

    Martínez-Martín, D. et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500–505 (2017).

    Article  ADS  Google Scholar 

  97. 97.

    Dolfi, S. C. et al. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab. 1, 20 (2013).

    Article  Google Scholar 

  98. 98.

    Marguerat, S. & Bähler, J. Coordinating genome expression with cell size. Trends Genet. 28, 560–565 (2012).

    Article  Google Scholar 

  99. 99.

    Blackiston, D. J., McLaughlin, K. A. & Levin, M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527–3536 (2009).

    Article  Google Scholar 

  100. 100.

    Rojas, E., Theriot, J. A. & Huang, K. C. Response of Escherichia coli growth rate to osmotic shock. Proc. Natl Acad. Sci. USA 111, 7807–7812 (2014).

    Article  ADS  Google Scholar 

  101. 101.

    Pilizota, T. & Shaevitz, J. W. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS ONE 7, e35205 (2012).

    Article  ADS  Google Scholar 

  102. 102.

    de Nadal, E., Ammerer, G. & Posas, F. Controlling gene expression in response to stress. Nat. Rev. Genet. 12, 833–845 (2011).

    Article  Google Scholar 

  103. 103.

    Geijer, C. et al. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. FEBS J. 280, 3854–3867 (2013).

    Article  Google Scholar 

  104. 104.

    Burg, M. B. & Garcia-Perez, A. How tonicity regulates gene expression. J. Am. Soc. Nephrol. 3, 121–127 (1992).

    Google Scholar 

  105. 105.

    Stoll, B., Gerok, W., Langt, F. & Haussinger, D. Liver cell volume and protein synthesis. Biochem. J. 287, 217–222 (1992).

    Article  Google Scholar 

  106. 106.

    Sukenik, S., Ren, P. & Gruebele, M. Weak protein–protein interactions in live cells are quantified by cell-volume modulation. Proc. Natl Acad. Sci. USA 114, 6776–6781 (2017).

    Google Scholar 

  107. 107.

    Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013).

    Article  ADS  Google Scholar 

  108. 108.

    Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

    Article  ADS  Google Scholar 

  109. 109.

    Bryan, A. K. et al. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab Chip 14, 569–576 (2014).

    Article  Google Scholar 

  110. 110.

    Rojas, E. R. & Huang, K. C. Regulation of microbial growth by turgor pressure. Curr. Opin. Microbiol. 42, 62–70 (2018).

    Article  Google Scholar 

  111. 111.

    Diz-Muñoz, A. et al. Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLoS Biol. 14, e1002474 (2016).

    Article  Google Scholar 

  112. 112.

    Rojas, E. R., Huang, K. C. & Theriot, J. A. Homeostatic cell growth is accomplished mechanically through membrane tension inhibition of cell-wall synthesis. Cell Syst. 5, 578–590 (2017).

    Article  Google Scholar 

  113. 113.

    Cermak, N. et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34, 1052–1059 (2016).

    Article  Google Scholar 

  114. 114.

    Kimmerling, R. J. et al. Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol. 19, 207 (2018).

    Article  Google Scholar 

  115. 115.

    Kesavan, S. V. et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy. Sci. Rep. 4, 5942 (2014).

    Article  Google Scholar 

  116. 116.

    Mir, M., Bergamaschi, A., Katzenellenbogen, B. S. & Popescu, G. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. PLoS ONE 9, e89000 (2014).

    Article  ADS  Google Scholar 

  117. 117.

    Fernandez-Fernandez, J. M., Nobles, M., Currid, A., Vazquez, E. & Valverde, M. A. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. AJP Cell Physiol. 283, C1705–C1714 (2002).

    Article  Google Scholar 

  118. 118.

    Mitchison, J. M., Sveiczer, A. & Novak, B. Length growth in fission yeast: is growth exponential? - No. Microbiology 144, 265–266 (1998).

    Article  Google Scholar 

  119. 119.

    Lisjak, M., Potokar, M., Rituper, B., Jorgačevski, J. & Zorec, R. AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes. J. Neurosci. 37, 10748–10756 (2017).

    Article  Google Scholar 

  120. 120.

    Son, S. et al. Cooperative nutrient accumulation sustains growth of mammalian cells. Sci. Rep. 5, 17401 (2015).

    Article  ADS  Google Scholar 

  121. 121.

    de Groot, S. R. & Mazur, P. Non-Equilibrium Thermodynamics (North-Holland, 1962).

  122. 122.

    Prost, J., Jülicher, F. & Joanny, J. F. Active gel physics. Nat. Phys. 11, 111–117 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

M.P. was funded by Institut Curie and CNRS. L.V. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 641639, and Fondation pour la recherche Médicale (FDT201805005592). P.R. acknowledges support from a CNRS Momentum grant. C.C. acknowledges financial support from the Fondation pour la recherche Médicale (FDT20160435078) and the Ligue Nationale contre le Cancer.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pierre Recho, Marco Cosentino Lagomarsino or Matthieu Piel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cadart, C., Venkova, L., Recho, P. et al. The physics of cell-size regulation across timescales. Nat. Phys. 15, 993–1004 (2019). https://doi.org/10.1038/s41567-019-0629-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing