The physics of cell-size regulation across timescales

Abstract

The size of a cell is determined by a combination of synthesis, self-assembly, incoming matter and the balance of mechanical forces. Such processes operate at the single-cell level, but they are deeply interconnected with cell-cycle progression, resulting in a stable average cell size at the population level. Here, we examine this phenomenon by reviewing the physics of growth processes that operate at vastly different timescales, but result in the controlled production of daughter cells that are close copies of their mothers. We first review the regulatory mechanisms of size at short timescales, focusing on the contribution of fundamental physical forces. We then discuss the multiple relevant regulation processes operating on the timescale of the cell cycle. Finally, we look at how these processes interact: one of the most important challenges to date involves bridging the gap between timescales, connecting the physics of cell growth and the biology of cell-cycle progression.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Factors setting the steady-state cell volume.
Fig. 2: Cell-volume regulation at short and medium timescales.
Fig. 3: Cell-volume regulation at medium and long timescales.
Fig. 4: Illustration of the timescales at play in the regulation of cell-size parameters.

References

  1. 1.

    Miermont, A. et al. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc. Natl Acad. Sci. USA 110, 5725–5730 (2013).

  2. 2.

    Delarue, M. et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174, 338–349.e20 (2018).

  3. 3.

    Lecuit, T. & Lenne, P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

  4. 4.

    Fischer-Friedrich, E., Hyman, A. A., Jülicher, F., Müller, D. J. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

  5. 5.

    Guo, M. et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl Acad. Sci. USA 114, E8618–E8627 (2017).

  6. 6.

    Marshall, W. F. Cell geometry: how cells count and measure size. Annu. Rev. Biophys. 45, 49–64 (2015).

  7. 7.

    Brownlee, C. & Heald, R. Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell 176, 805–815.e8 (2019).

  8. 8.

    Edgar, B. A. How flies get their size: genetics meets physiology. Nat. Rev. Genet. 7, 907–916 (2006).

  9. 9.

    Yu, F.-X., Zhao, B. & Guan, K.-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).

  10. 10.

    Zhou, E. H. et al. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc. Natl Acad. Sci. USA 106, 10632–10637 (2009).

  11. 11.

    Sachs, F. & Sivaselvan, M. V. Cell volume control in three dimensions: water movement without solute movement. J. Gen. Physiol. 145, 373–80 (2015).

  12. 12.

    Day, R. E. et al. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta 1840, 1492–506 (2014).

  13. 13.

    Kedem, O. & Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958).

  14. 14.

    Solenov, E. I., Baturina, G. S., Katkova, L. E. & Zarogiannis, S. G. Methods to measure water permeability. Adv. Exp. Med. Biol. 969, 263–276 (2017).

  15. 15.

    Ateshian, G. A., Morrison, B., Holmes, J. W. & Hung, C. T. Mechanics of cell growth. Mech. Res. Commun. 42, 118–125 (2012).

  16. 16.

    Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

  17. 17.

    Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).

  18. 18.

    Deng, Y., Sun, M. & Shaevitz, J. W. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158101 (2011).

  19. 19.

    Nezhad, A. S., Naghavi, M., Packirisamy, M., Bhat, R. & Geitmann, A. Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13, 2599–608 (2013).

  20. 20.

    Ponder, E. The measurement of red‐cell volume. Conductivity measurements. J. Physiol. 85, 439–449 (1935).

  21. 21.

    Essig, A. The ‘pump-leak’ model and exchange diffusion. Biophys. J. 8, 53–63 (1968).

  22. 22.

    Mori, Y. Mathematical properties of pump-leak models of cell volume control and electrolyte balance. J. Math. Biol. 65, 875–918 (2012).

  23. 23.

    Feranchak, A. P. et al. p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J. Clin. Invest. 108, 1495–1504 (2001).

  24. 24.

    Sinha, B. et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144, 402–413 (2011).

  25. 25.

    Groulx, N., Boudreault, F., Orlov, S. N. & Grygorczyk, R. Membrane reserves and hypotonic cell swelling. J. Membr. Biol. 214, 43–56 (2006).

  26. 26.

    Hui, T. H. et al. Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Phys. Rev. Lett. 113, 118101 (2014).

  27. 27.

    Zlotek-Zlotkiewicz, E., Monnier, S., Cappello, G., Le Berre, M. & Piel, M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 211, 765–774 (2015).

  28. 28.

    Son, S. et al. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J. Cell Biol. 211, 757–763 (2015).

  29. 29.

    Potočar, U. et al. Adipose-derived stem cells respond to increased osmolarities. PLoS ONE 11, e0163870 (2016).

  30. 30.

    Hoffmann, E. K., Lambert, I. H. & Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277 (2009).

  31. 31.

    Jiang, H. & Sun, S. X. Cellular pressure and volume regulation and implications for cell mechanics. Biophys. J. 105, 609–619 (2013).

  32. 32.

    Haswell, E. S., Phillips, R. & Rees, D. C. Mechanosensitive channels: what can they do and how do they do it? Structure 19, 1356–1369 (2011).

  33. 33.

    Yang, N. J. & Hinner, M. J. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. 1266, 29–53 (2015).

  34. 34.

    Hui, T. H. et al. Regulating the membrane transport activity and death of cells via electroosmotic manipulation. Biophys. J. 110, 2769–2778 (2016).

  35. 35.

    Roudaut, Y. et al. Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels 6, 234–245 (2012).

  36. 36.

    Wu, J., Lewis, A. H. & Grandl, J. Touch, tension, and transduction—the function and regulation of piezo ion channels. Trends Biochem. Sci. 42, 57–71 (2017).

  37. 37.

    Martinac, B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta 1838, 682–691 (2014).

  38. 38.

    Syeda, R. et al. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499–511 (2016).

  39. 39.

    Sachs, F. Stretch-activated ion channels: what are they? Physiology 25, 50–56 (2010).

  40. 40.

    Han, F., Tucker, A. L., Lingrel, J. B., Despa, S. & Bers, D. M. Extracellular potassium dependence of the Na+-K+-ATPase in cardiac myocytes: isoform specificity and effect of phospholemman. Am. J. Physiol. Cell Physiol. 297, 699–705 (2009).

  41. 41.

    Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474 (2007).

  42. 42.

    Sands, Z., Grottesi, A. & Sansom, M. S. P. Voltage-gated ion channels. Curr. Biol. 15, R44–R47 (2005).

  43. 43.

    Lloyd, A. C. The regulation of cell size. Cell 154, 1194–1205 (2013).

  44. 44.

    Caron, A., Richard, D. & Laplante, M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35, 321–348 (2015).

  45. 45.

    Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

  46. 46.

    Son, S. et al. Direct observation of mammalian cell growth and size regulation. Nat. Methods 9, 910–912 (2012).

  47. 47.

    Cadart, C. et al. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat. Commun. 9, 3275 (2018).

  48. 48.

    Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

  49. 49.

    Osella, M., Nugent, E. & Cosentino Lagomarsino, M. Concerted control of Escherichia coli cell division. Proc. Natl Acad. Sci. USA 111, 3431–3435 (2014).

  50. 50.

    Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).

  51. 51.

    Reshes, G., Vanounou, S., Fishov, I. & Feingold, M. Cell shape dynamics in Escherichia coli. Biophys. J. 94, 251–264 (2008).

  52. 52.

    Nordholt, N., van Heerden, J. H. & Bruggeman, F. J. Integrated biphasic growth rate, gene expression, and cell-size homeostasis behaviour of single B. subtilis cells. Preprint at https://doi.org/10.1101/510925 (2019).

  53. 53.

    Ferrezuelo, F. et al. The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat. Commun. 3, 1012 (2012).

  54. 54.

    Goranov, A. I. et al. The rate of cell growth is governed by cell cycle stage. Genes Dev. 23, 1408–1422 (2009).

  55. 55.

    Horváth, A., Rácz-Mónus, A., Buchwald, P. & Sveiczer, Á. Cell length growth in fission yeast: an analysis of its bilinear character and the nature of its rate change transition. FEMS Yeast Res. 13, 635–649 (2013).

  56. 56.

    Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

  57. 57.

    Sung, Y. et al. Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc. Natl Acad. Sci. USA 110, 16687–16692 (2013).

  58. 58.

    Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl Acad. Sci. USA 108, 13124–13129 (2011).

  59. 59.

    Conlon, I. & Raff, M. Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2, 7 (2003).

  60. 60.

    Mitchison, J. M. & Nurse, P. Growth in cell length in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 75, 357–376 (1985).

  61. 61.

    Baumgärtner, S. & Tolić-Nørrelykke, I. M. Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis. Biophys. J. 96, 4336–4347 (2009).

  62. 62.

    Goranov, A. I. & Amon, A. Growth and division—not a one-way road. Curr. Opin. Cell Biol. 22, 795–800 (2010).

  63. 63.

    Mitchison, J. M. Growth during the cell cycle. Int. Rev. Cytol. 226, 165–258 (2003).

  64. 64.

    Glazier, D. Metabolic scaling in complex living systems. Systems 2, 451–540 (2014).

  65. 65.

    Miettinen, T. P. & Bjorklund, M. Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev. Cell 39, 370–382 (2016).

  66. 66.

    Kafri, M. et al. The cost of protein production. Cell Rep. 14, 22–31 (2016).

  67. 67.

    Lin, J. & Amir, A. Homeostasis of protein and mRNA concentrations in growing cells. Nat. Commun. 9, 4496 (2018).

  68. 68.

    Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007).

  69. 69.

    Schmoller, K. M. & Skotheim, J. M. The biosynthetic basis of cell size control. Trends Cell Biol. 25, 793–802 (2015).

  70. 70.

    Facchetti, G., Chang, F. & Howard, M. Controlling cell size through sizer mechanisms. Curr. Opin. Syst. Biol. 5, 86–92 (2017).

  71. 71.

    Chandler-Brown, D., Schmoller, K. M., Winetraub, Y. & Skotheim, J. M. The adder phenomenon emerges from independent control of pre- and post-start phases of the budding yeast cell cycle. Curr. Biol. 27, 2774–2783.e3 (2017).

  72. 72.

    Dolznig, H., Grebien, F., Sauer, T., Beug, H. & Müllner, E. W. Evidence for a size-sensing mechanism in animal cells. Nat. Cell Biol. 6, 899–905 (2004).

  73. 73.

    Liu, S. et al. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. eLife 7, e26947 (2018).

  74. 74.

    Varsano, G., Wang, Y. & Wu, M. Probing mammalian cell size homeostasis by channel-assisted cell reshaping. Cell Rep. 20, 397–410 (2017).

  75. 75.

    Facchetti, G., Knapp, B., Flor-Parra, I., Chang, F. & Howard, M. Reprogramming Cdr2-dependent geometry-based cell size control in fission yeast. Curr. Biol. 29, 350–358.e4 (2019).

  76. 76.

    Garmendia-Torres, C., Tassy, O., Matifas, A., Molina, N. & Charvin, G. Multiple inputs ensure yeast cell size homeostasis during cell cycle progression. eLife 7, e34025 (2018).

  77. 77.

    Jonas, F., Soifer, I. & Barkai, N. A visual framework for classifying determinants of cell size. Cell Rep. 25, 3519–3529.e2 (2018).

  78. 78.

    Fantes, P. A., Grant, W. D., Pritchard, R. H., Sudbery, P. E. & Wheals, A. E. The regulation of cell size and the control of mitosis. J. Theor. Biol. 50, 213–244 (1975).

  79. 79.

    Soifer, I., Robert, L. & Amir, A. Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Curr. Biol. 26, 356–361 (2016).

  80. 80.

    Schmoller, K., Turner, J. J., Kõivomägi, M. & Skotheim, J. M. Dilution of the cell cycle inhibitor Whi5 controls budding yeast cell size. Nature 526, 268–272 (2015).

  81. 81.

    Zatulovskiy, E., Berenson, D. F., Topacio, B. R. & Skotheim, J. M. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Preprint at https://doi.org/10.1101/470013 (2018).

  82. 82.

    Sompayrac, L. & Maaløe, O. Autorepressor model for control of DNA replication. Nat. New Biol. 241, 133–135 (1973).

  83. 83.

    Harris, L. K. & Theriot, J. A. Relative rates of surface and volume synthesis set bacterial cell size. Cell 165, 1479–1492 (2016).

  84. 84.

    Zielke, N. et al. Control of Drosophila endocycles by E2F and CRL4CDT2. Nature 480, 123–127 (2011).

  85. 85.

    Heldt, F. S., Lunstone, R., Tyson, J. J. & Novák, B. Dilution and titration of cell-cycle regulators may control cell size in budding yeast. PLoS Comput. Biol. 14, e1006548 (2018).

  86. 86.

    Osella, M., Tans, S. J. & Cosentino Lagomarsino, M. Step by step, cell by cell: quantification of the bacterial cell cycle. Trends Microbiol. 25, 250–256 (2017).

  87. 87.

    Tzur, A., Kafri, R., Lebleu, V. S., Lahav, G. & Kirschner, M. W. Cell growth and size homeostasis in proliferating animal cells. Science 325, 167–171 (2009).

  88. 88.

    Park, K. et al. Measurement of adherent cell mass and growth. Proc. Natl Acad. Sci. USA 107, 20691–20696 (2010).

  89. 89.

    Ginzberg, M. B. et al. Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. eLife 7, e26947 (2018).

  90. 90.

    Amir, A. Cell size regulation in bacteria. Phys. Rev. Lett. 112, 208102 (2014).

  91. 91.

    Grilli, J., Osella, M., Kennard, A. S. & Lagomarsino, M. C. Relevant parameters in models of cell division control. Phys. Rev. E 95, 032411 (2017).

  92. 92.

    Kennard, A. S. et al. Individuality and universality in the growth-division laws of single E. coli cells. Phys. Rev. E 93, 012408 (2016).

  93. 93.

    Bassetti, F., Epifani, I. & Ladelli, L. Cox Markov models for estimating single cell growth. Electron. J. Stat. 11, 2931–2977 (2017).

  94. 94.

    Grilli, J., Cadart, C., Micali, G., Osella, M. & Cosentino Lagomarsino, M. The empirical fluctuation pattern of E. coli division control. Front. Microbiol. 9, 1541 (2018).

  95. 95.

    Micali, G., Grilli, J., Marchi, J., Osella, M. & Cosentino Lagomarsino, M. Dissecting the control mechanisms for DNA replication and cell division in E. coli. Cell Rep. 25, 761–771.e4 (2018).

  96. 96.

    Martínez-Martín, D. et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500–505 (2017).

  97. 97.

    Dolfi, S. C. et al. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab. 1, 20 (2013).

  98. 98.

    Marguerat, S. & Bähler, J. Coordinating genome expression with cell size. Trends Genet. 28, 560–565 (2012).

  99. 99.

    Blackiston, D. J., McLaughlin, K. A. & Levin, M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527–3536 (2009).

  100. 100.

    Rojas, E., Theriot, J. A. & Huang, K. C. Response of Escherichia coli growth rate to osmotic shock. Proc. Natl Acad. Sci. USA 111, 7807–7812 (2014).

  101. 101.

    Pilizota, T. & Shaevitz, J. W. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS ONE 7, e35205 (2012).

  102. 102.

    de Nadal, E., Ammerer, G. & Posas, F. Controlling gene expression in response to stress. Nat. Rev. Genet. 12, 833–845 (2011).

  103. 103.

    Geijer, C. et al. Initiation of the transcriptional response to hyperosmotic shock correlates with the potential for volume recovery. FEBS J. 280, 3854–3867 (2013).

  104. 104.

    Burg, M. B. & Garcia-Perez, A. How tonicity regulates gene expression. J. Am. Soc. Nephrol. 3, 121–127 (1992).

  105. 105.

    Stoll, B., Gerok, W., Langt, F. & Haussinger, D. Liver cell volume and protein synthesis. Biochem. J. 287, 217–222 (1992).

  106. 106.

    Sukenik, S., Ren, P. & Gruebele, M. Weak protein–protein interactions in live cells are quantified by cell-volume modulation. Proc. Natl Acad. Sci. USA 114, 6776–6781 (2017).

  107. 107.

    Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013).

  108. 108.

    Dill, K. A., Ghosh, K. & Schmit, J. D. Physical limits of cells and proteomes. Proc. Natl Acad. Sci. USA 108, 17876–17882 (2011).

  109. 109.

    Bryan, A. K. et al. Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab Chip 14, 569–576 (2014).

  110. 110.

    Rojas, E. R. & Huang, K. C. Regulation of microbial growth by turgor pressure. Curr. Opin. Microbiol. 42, 62–70 (2018).

  111. 111.

    Diz-Muñoz, A. et al. Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLoS Biol. 14, e1002474 (2016).

  112. 112.

    Rojas, E. R., Huang, K. C. & Theriot, J. A. Homeostatic cell growth is accomplished mechanically through membrane tension inhibition of cell-wall synthesis. Cell Syst. 5, 578–590 (2017).

  113. 113.

    Cermak, N. et al. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays. Nat. Biotechnol. 34, 1052–1059 (2016).

  114. 114.

    Kimmerling, R. J. et al. Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol. 19, 207 (2018).

  115. 115.

    Kesavan, S. V. et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy. Sci. Rep. 4, 5942 (2014).

  116. 116.

    Mir, M., Bergamaschi, A., Katzenellenbogen, B. S. & Popescu, G. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. PLoS ONE 9, e89000 (2014).

  117. 117.

    Fernandez-Fernandez, J. M., Nobles, M., Currid, A., Vazquez, E. & Valverde, M. A. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. AJP Cell Physiol. 283, C1705–C1714 (2002).

  118. 118.

    Mitchison, J. M., Sveiczer, A. & Novak, B. Length growth in fission yeast: is growth exponential? - No. Microbiology 144, 265–266 (1998).

  119. 119.

    Lisjak, M., Potokar, M., Rituper, B., Jorgačevski, J. & Zorec, R. AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes. J. Neurosci. 37, 10748–10756 (2017).

  120. 120.

    Son, S. et al. Cooperative nutrient accumulation sustains growth of mammalian cells. Sci. Rep. 5, 17401 (2015).

  121. 121.

    de Groot, S. R. & Mazur, P. Non-Equilibrium Thermodynamics (North-Holland, 1962).

  122. 122.

    Prost, J., Jülicher, F. & Joanny, J. F. Active gel physics. Nat. Phys. 11, 111–117 (2015).

Download references

Acknowledgements

M.P. was funded by Institut Curie and CNRS. L.V. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 641639, and Fondation pour la recherche Médicale (FDT201805005592). P.R. acknowledges support from a CNRS Momentum grant. C.C. acknowledges financial support from the Fondation pour la recherche Médicale (FDT20160435078) and the Ligue Nationale contre le Cancer.

Author information

Correspondence to Pierre Recho or Marco Cosentino Lagomarsino or Matthieu Piel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark