Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation and acceleration of electron bunches from a plasma photocathode


Plasma waves generated in the wake of intense, relativistic laser1,2 or particle beams3,4 can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected5,6 or captured from the background plasma7,8. Here we demonstrate optically triggered injection9,10,11 and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical11 density down-ramp injection12,13,14,15,16 and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness17. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Simulation of two injection modes into a beam-driven plasma wave.
Fig. 2: Electron charge and spectra obtained from plasma torch injection.
Fig. 3: Injected charge as a function of laser energy and timing.
Fig. 4: Spectra of electron bunches from the plasma photocathode.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    ADS  Article  Google Scholar 

  2. 2.

    Leemans, W. P. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Chen, P., Dawson, J. M., Huff, R. W. & Katsouleas, T. Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–696 (1985).

    ADS  Article  Google Scholar 

  4. 4.

    Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    Rosenzweig, J. B. et al. Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98–101 (1988).

    ADS  Article  Google Scholar 

  6. 6.

    Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Oz, E. et al. Ionization-induced electron trapping in ultrarelativistic plasma wakes. Phys. Rev. Lett. 98, 084801 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Vafaei-Najafabadi, N. et al. Beam loading by distributed injection of electrons in a plasma wakefield accelerator. Phys. Rev. Lett. 112, 025001 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Hidding, B. et al. Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. Phys. Rev. Lett. 108, 035001 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Li, F. et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator. Phys. Rev. Lett. 111, 015003 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Wittig, G. et al. Optical plasma torch electron bunch generation in plasma wakefield accelerators. Phys. Rev. ST Accel. Beams 18, 081304 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, 5257–5260 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    Suk, H., Barov, N., Rosenzweig, J. B. & Esarey, E. Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 1011–1014 (2001).

    ADS  Article  Google Scholar 

  14. 14.

    Geddes, C. G. et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Faure, J. et al. Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas 17, 083107 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Brijesh, P. et al. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators. Phys. Plasmas 19, 063104 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Manahan, G. G. et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 8, 15705 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Bostedt, C. et al. Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Rosenzweig, J. B. & Colby, E. Charge and wavelength scaling of RF photoinjector designs. AIP Conf. Proc. 335, 724–737 (1995).

    ADS  Article  Google Scholar 

  20. 20.

    Hogan, M. J. et al. Plasma wakefield acceleration experiments at FACET. New J. Phys. 12, 055030 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Davidson, N., Friesem, A. A. & Hasman, E. Holographic axilens: high resolution and long focal depth. Opt. Lett. 16, 523–525 (1991).

    ADS  Article  Google Scholar 

  22. 22.

    Green, S. Z. et al. Laser ionized preformed plasma at FACET. Plasma Phys. Control. Fusion 56, 084011 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Manahan, G. G. et al. Hot spots and dark current in advanced plasma wakefield accelerators. Phys. Rev. Accel. Beams 19, 011303 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and atomic ions in a varying electromagnetic-field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  25. 25.

    Pak, A. et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Umstadter, D. et al. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett. 76, 2073–2076 (1996).

    ADS  Article  Google Scholar 

  27. 27.

    Faure, J. et al. Controlled injection and acceleration of electrons in plasma. Nature 444, 737–739 (2006).

    ADS  Article  Google Scholar 

  28. 28.

    Thomas, A. G. R. et al. Monoenergetic electronic beam production using dual collinear laser pulses. Phys. Rev. Lett. 100, 255002 (2008).

    ADS  Article  Google Scholar 

  29. 29.

    Bourgeois, N., Cowley, J. & Hooker, S. M. Two-pulse ionization injection into quasilinear laser wakefields. Phys. Rev. Lett. 111, 155004 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    Yu, L.-L. et al. Two-color laser-ionization injection. Phys. Rev. Lett. 112, 125001 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Tomassini, P. et al. The resonant multi-pulse ionization injection. Phys. Plasmas 24, 103120 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Chao, A. W. Handbook of Accelerator Physics and Engineering 2nd edn (World Scientific, 2013).

  33. 33.

    Nieter, C. & Cary, J. R. VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 448–473 (2004).

    ADS  Article  Google Scholar 

  34. 34.

    Bruhwiler, D. L. et al. Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators. Phys. Plasmas 10, 2022–2030 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    Chen, M. et al. Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes. J. Comput. Phys. 236, 220–228 (2013).

    ADS  MathSciNet  Article  Google Scholar 

Download references


The FACET ‘E210: Trojan Horse’ plasma wakefield acceleration experiment was built and operated with support from UCLA (US Department of Energy (DOE) contract no. DE-SC0009914), RadiaBeam Technologies (DOE contract no. DE-SC0009533), the FACET E200 team and DOE under contract no. DE-AC02-76SF00515, H2020 EuPRAXIA (grant no. 653782), Helmholtz VH-VI-503, EPSRC (grant no. EP/N028694/1) and the Research Council of Norway (grant no. 230450). R.Z. and M.C.D. acknowledge support from DOE grant no. DE-SC0011617 and US NSF grant no. PHY-1734319. B.H. acknowledges support from the DFG Emmy–Noether programme. This work used computational resources of the National Energy Research Scientific Computing Center, which is supported by DOE DE-AC02-05CH11231, JURECA (project hhh36), HLRN and Shaheen (project k1191). D.L.B. acknowledges support from the US DOE Office of High Energy Physics under award no. DE-SC0013855. J.R.C. acknowledges support from the National Science Foundation under award no. PHY 1734281.

Author information




B.H., J.B.R., G.A., M.J.H. and V.Y. planned the project. A.D., O.S.K., T.H., A.K., P.S., G.G.M., Y.X., M.D.L., B.D.O., S.G., C.I.C., S.Z.G., C.A.L., E.A., R.Z., M.C.D., G.A., A.M., M.J.H., V.Y., J.B.R. and B.H. contributed to the experiments. O.S.K., T.H., A.K., P.S., G.G.M., A.B., D.U., G.W., A.F.H., Y.X., M.D.L., B.D.O., C.A.L., D.L.B., J.R.C. and B.H. contributed to numerical and simulation work. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to B. Hidding.

Ethics declarations

Competing interests

G.A., A.M., D.L.B. and J.R.C.’s primary or secondary affiliations are with companies who supported the experimental and computational work, and a patent has been filed based on related work17 (PCT/GB2017/052942) by the University of Strathclyde, supported by RadiaBeam Technologies.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Supplementary Figs. 1–4 and Supplementary Information on Supplementary videos.

Supplementary Video 1

Particle-in-cell simulation video of electron bunch generation from plasma torch injection with a laser pulse energy of 5 mJ.

Supplementary Video 2

Particle-in-cell simulation video of electron bunch generation from plasma photocathode injection with a laser pulse energy of 0.5 mJ.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, A., Karger, O.S., Heinemann, T. et al. Generation and acceleration of electron bunches from a plasma photocathode. Nat. Phys. 15, 1156–1160 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing