The odd free surface flows of a colloidal chiral fluid


In simple fluids, such as water, invariance under parity and time-reversal symmetry imposes that the rotation of constituent ‘atoms’ is determined by the flow and that viscous stresses damp motion. Activation of the rotational degrees of freedom of a fluid by spinning its atomic building blocks breaks these constraints and has thus been the subject of fundamental theoretical interest across classical and quantum fluids. However, the creation of a model liquid that isolates chiral hydrodynamic phenomena has remained experimentally elusive. Here, we report the creation of a cohesive two-dimensional chiral liquid consisting of millions of spinning colloidal magnets and study its flows. We find that dissipative viscous ‘edge-pumping’ is a key and general mechanism of chiral hydrodynamics, driving unidirectional surface waves and instabilities, with no counterpart in conventional fluids. Spectral measurements of the chiral surface dynamics suggest the presence of Hall viscosity, an experimentally elusive property of chiral fluids. Precise measurements and comparison with theory demonstrate excellent agreement with a minimal chiral hydrodynamic model, paving the way for the exploration of chiral hydrodynamics in experiment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A chiral fluid of spinning colloidal magnets.
Fig. 2: Surface waves in a chiral spinner fluid.
Fig. 3: Characterization of a droplet of chiral spinner fluid.
Fig. 4: Wave dissipation and measurement of Hall viscosity.
Fig. 5: A hydrodynamic instability.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.


  1. 1.

    Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS  Google Scholar 

  2. 2.

    Pringle, J. E. & King, A. Astrophysical Flows (Cambridge University Press, 2007).

  3. 3.

    Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    ADS  Google Scholar 

  4. 4.

    van Zuiden, B. C., Paulose, J., Irvine, W. T. M., Bartolo, D. & Vitelli, V. Spatiotemporal order and emergent edge currents in active spinner materials. Proc. Natl Acad. Sci. USA 113, 12919–12924 (2016).

    ADS  Google Scholar 

  5. 5.

    Lenz, P., Joanny, J.-F., Jülicher, F. & Prost, J. Membranes with rotating motors. Phys. Rev. Lett. 91, 108104 (2003).

    ADS  Google Scholar 

  6. 6.

    Fürthauer, S., Strempel, M., Grill, S. W. & Jülicher, F. Active chiral processes in thin films. Phys. Rev. Lett. 110, 048103 (2013).

    ADS  Google Scholar 

  7. 7.

    Kokot, G. et al. Active turbulence in a gas of self-assembled spinners. Proc. Natl Acad. Sci. USA 114, 12870–12875 (2017).

    ADS  Google Scholar 

  8. 8.

    Yeo, K. & Maxey, M. R. Rheology and ordering transitions of non-Brownian suspensions in a confined shear flow: effects of external torques. Phys. Rev. E 81, 062501 (2010).

    ADS  Google Scholar 

  9. 9.

    Nguyen, N. H., Klotsa, D., Engel, M. & Glotzer, S. C. Emergent collective phenomena in a mixture of hard shapes through active rotation. Phys. Rev. Lett. 112, 075701 (2014).

    ADS  Google Scholar 

  10. 10.

    Ariman, T., Turk, M. A. & Sylvester, N. D. Microcontinuum fluid mechanics—a review. Int. J. Eng. Sci. 11, 905–930 (1973).

    MATH  Google Scholar 

  11. 11.

    Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, J. E. Hydrodynamic electron flow and Hall viscosity. Phys. Rev. Lett. 118, 226601 (2017).

    ADS  Google Scholar 

  12. 12.

    Wiegmann, P. & Abanov, A. G. Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014).

    ADS  Google Scholar 

  13. 13.

    Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).

    ADS  Google Scholar 

  14. 14.

    Avron, J. E., Seiler, R. & Zograf, P. G. Viscosity of quantum Hall fluids. Phys. Rev. Lett. 75, 697–700 (1995).

    ADS  Google Scholar 

  15. 15.

    Avron, J. E. Odd viscosity. J. Stat. Phys. 92, 543–557 (1998).

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Abanov, A., Can, T. & Ganeshan, S. Odd surface waves in two-dimensional incompressible fluids. SciPost Phys. 5, 010 (2018).

    ADS  Google Scholar 

  17. 17.

    Knaap, H. & Beenakker, J. Heat conductivity and viscosity of a gas of non-spherical molecules in a magnetic field. Physica 33, 643–670 (1967).

    ADS  Google Scholar 

  18. 18.

    Hulsman, H. & Knaap, H. Experimental arrangements for measuring the five independent shear-viscosity coefficients in a polyatomic gas in a magnetic field. Physica 50, 565–572 (1970).

    ADS  Google Scholar 

  19. 19.

    Petroff, A. P., Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114, 158102 (2015).

    ADS  Google Scholar 

  20. 20.

    Belovs, M. & Cēbers, A. Hydrodynamics with spin in bacterial suspensions. Phys. Rev. E 93, 062404 (2016).

    ADS  Google Scholar 

  21. 21.

    Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).

    ADS  Google Scholar 

  22. 22.

    Grzybowski, B. A., Jiang, X., Stone, H. A. & Whitesides, G. M. Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid–air interface: Macroscopic, two-dimensional classical artificial atoms and molecules. Phys. Rev. E 64, 011603 (2001).

    ADS  Google Scholar 

  23. 23.

    Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamics of self assembly of magnetized disks rotating at the liquid-air interface. Proc. Natl Acad. Sci. USA 99, 4147–4151 (2002).

    ADS  Google Scholar 

  24. 24.

    Grzybowski, B. A. & Whitesides, G. M. Dynamic aggregation of chiral spinners. Science 296, 718–721 (2002).

    ADS  Google Scholar 

  25. 25.

    Yan, J., Bae, S. C. & Granick, S. Rotating crystals of magnetic Janus colloids. Soft Matter 11, 147–153 (2014).

    ADS  Google Scholar 

  26. 26.

    Yan, J., Bae, S. C. & Granick, S. Colloidal superstructures programmed into magnetic Janus particles. Adv. Mater. 27, 874–879 (2015).

    Google Scholar 

  27. 27.

    Rosensweig, R. E. Ferrohydrodynamics (Courier Corporation, 2013).

  28. 28.

    Torres-Daz, I. & Rinaldi, C. Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10, 8584–8602 (2014).

    ADS  Google Scholar 

  29. 29.

    Tsai, J.-C., Ye, F., Rodriguez, J., Gollub, J. P. & Lubensky, T. C. A chiral granular gas. Phys. Rev. Lett. 94, 214301 (2005).

    ADS  Google Scholar 

  30. 30.

    Scholz, C., Engel, M. & Pöschel, T. Rotating robots move collectively and self-organize. Nat. Commun. 9, 931 (2018).

    ADS  Google Scholar 

  31. 31.

    Bacri, J.-C., Perzynski, R., Shliomis, M. I. & Burde, G. I. ‘Negative-viscosity’ effect in a magnetic fluid. Phys. Rev. Lett. 75, 2128–2131 (1995).

    ADS  Google Scholar 

  32. 32.

    Climent, E., Yeo, K., Maxey, M. R. & Karniadakis, G. E. Dynamic self-assembly of spinning particles. J. Fluids Eng. 129, 379–387 (2006).

    Google Scholar 

  33. 33.

    Goto, Y. & Tanaka, H. Purely hydrodynamic ordering of rotating disks at a finite Reynolds number. Nat. Commun. 6, 5994 (2015).

    ADS  Google Scholar 

  34. 34.

    Yeo, K., Lushi, E. & Vlahovska, P. M. Collective dynamics in a binary mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114, 188301 (2015).

    ADS  Google Scholar 

  35. 35.

    Snezhko, A. Complex collective dynamics of active torque-driven colloids at interfaces. Curr. Opin. Colloid Interface Sci. 21, 65–75 (2016).

    Google Scholar 

  36. 36.

    Bacri, J.-C., Cebers, A. O. & Perzynski, R. Behavior of a magnetic fluid microdrop in a rotating magnetic field. Phys. Rev. Lett. 72, 2705–2708 (1994).

    ADS  Google Scholar 

  37. 37.

    Bonthuis, D. J., Horinek, D., Bocquet, L. & Netz, R. R. Electrohydraulic power conversion in planar nanochannels. Phys. Rev. Lett. 103, 144503 (2009).

    ADS  Google Scholar 

  38. 38.

    Dahler, J. S. & Scriven, L. E. Theory of structured continua. I. General consideration of angular momentum and polarization. Proc. R. Soc. Lond. A 275, 504–527 (1963).

    ADS  Google Scholar 

  39. 39.

    Huang, H.-F., Zahn, M. & Lemaire, E. Continuum modeling of micro-particle electrorotation in Couette and Poiseuille flows-the zero spin viscosity limit. J. Electrost. 68, 345–359 (2010).

    Google Scholar 

  40. 40.

    de Groot, S. P. & Mazur, P. Non-Equilibrium Thermodynamics (Dover Publications, 1962).

  41. 41.

    Andreotti, B., Forterre, Y. & Pouliquen, O. Granular Media (Cambridge University Press, 2013).

  42. 42.

    Read, N. Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p x + ip y paired superfluids. Phys. Rev. B 79, 045308 (2009).

    ADS  Google Scholar 

  43. 43.

    Radin, S. Lorentz plasma in a strong magnetic field. Phys. Fluids 15, 91–95 (1972).

    ADS  Google Scholar 

  44. 44.

    Robinson, B. B. & Bernstein, I. B. A variational description of transport phenomena in a plasma. Ann. Phys. 18, 110–169 (1962).

    ADS  MathSciNet  MATH  Google Scholar 

  45. 45.

    Pitaevskii, L. P. & Lifshitz, E. M. Physical Kinetics (Butterworth-Heinemann, 1981).

  46. 46.

    Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V. Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122, 128001 (2019).

    ADS  MathSciNet  Google Scholar 

  47. 47.

    Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–930 (1997).

    ADS  MATH  Google Scholar 

  48. 48.

    Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

    ADS  Google Scholar 

Download references


We would like to acknowledge discussions with P. Wiegmann, A. Abanov, V. Vitelli and A. Souslov. We also thank M. Fruchart for discussions and pointing us to the review of kinetic theory of Hall viscosity presented in the supplementary information of ref. 46. We finally thank J. Simon for designing our current control circuits and R. Morton for the rendering in Fig. 1b. This work was primarily supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award number DMR-1420709. Additional support was provided by NSF EFRI NewLAW grant 1741685 and the Packard Foundation. M.J.S. acknowledges the support from NSF grants DMR-1420073 (NYU-MRSEC) and DMS-1463962. S.S. acknowledges support from NSF award DMR-1653465. D.B. and W.T.M.I. gratefully acknowledge the Chicago-France FACCTS programme. The Chicago MRSEC (US NSF grant DMR 1420709) is also gratefully acknowledged for access to its shared experimental facilities.

Author information




W.T.M.I. initiated research. W.T.M.I., D.B. and M.J.S. designed and supervised research. V.S., E.S.B. and S.M. designed and performed experiments and analysed data. D.B. and W.T.M.I. analysed data. M.J.S. and W.T.M.I. developed theory. S.S. and V.S. synthesized particles. S.M. built the magnetic control system. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to William T. M. Irvine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Petia Vlahovska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Figs. 1–26 and refs. 1–21.

Supplementary Video 1

From spinning colloidal particles to a chiral fluid.

Supplementary Video 2

Particle tracers in the chiral spinner fluid.

Supplementary Video 3

Two clusters coalesce.

Supplementary Video 4

A droplet impacts a hard wall.

Supplementary Video 5

Bubble collapse.

Supplementary Video 6

Flow past a circular obstacle.

Supplementary Video 7

Surface waves in a chiral spinner fluid.

Supplementary Video 8

Droplet intensity in time.

Supplementary Video 9

Velocity field in a droplet.

Supplementary Video 10

A droplet of chiral fluid on a low-friction substrate.

Supplementary Video 11

A hydrodynamic instability.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soni, V., Bililign, E.S., Magkiriadou, S. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing