Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attosecond screening dynamics mediated by electron localization in transition metals

Abstract

Transition metals, with their densely confined and strongly coupled valence electrons, are key constituents of many materials with unconventional properties1, such as high-temperature superconductors, Mott insulators and transition metal dichalcogenides2. Strong interaction offers a fast and efficient lever to manipulate electron properties with light, creating promising potential for next-generation electronics3,4,5,6. However, the underlying dynamics is a hard-to-understand, fast and intricate interplay of polarization and screening effects, which are hidden below the femtosecond timescale of electronic thermalization that follows photoexcitation7. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects8 with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d orbitals. The latter modifies the electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids before electron thermalization. We anticipate that our study may facilitate further investigations of electronic phase transitions, laser–metal interactions and photo-absorption in correlated-electron systems on their natural timescales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Attosecond transient absorption spectroscopy.
Fig. 2: Experimental pump–probe results.
Fig. 3: Ab initio calculation results.
Fig. 4: Real-time and real-space theoretical investigation of the laser-driven microscopic electron dynamics in Ti.

Data availability

The data that support the findings of this study are available via https://doi.org/10.3929/ethz-b-000345468 or from the corresponding author upon reasonable request.

Code availability

The Octopus code for TDDFT is available at https://octopus-code.org.

References

  1. Kotliar, G. & Vollhardt, D. Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57, 53–59 (2004).

    Google Scholar 

  2. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    ADS  Google Scholar 

  3. Nasu, K. Photoinduced Phase Transitions (World Scientific, 2004).

  4. Wegkamp, D. et al. Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. Phys. Rev. Lett. 113, 216401 (2014).

    ADS  Google Scholar 

  5. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    ADS  Google Scholar 

  6. Zhou, Y. & Ramanathan, S. Correlated electron materials and field effect transistors for logic: a review. Crit. Rev. Solid State Mater. Sci. 38, 286–317 (2013).

    ADS  Google Scholar 

  7. Bauer, M., Marienfeld, A. & Aeschlimann, M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci. 90, 319–376 (2015).

    ADS  Google Scholar 

  8. Amusia, M. Y. & Connerade, J.-P. The theory of collective motion probed by light. Rep. Prog. Phys. 63, 41–70 (2000).

    ADS  Google Scholar 

  9. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Google Scholar 

  10. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    ADS  Google Scholar 

  11. Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016).

    Google Scholar 

  12. Lucchini, M. et al. Attosecond dynamical Franz–Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    ADS  Google Scholar 

  13. Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017).

    ADS  Google Scholar 

  14. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Google Scholar 

  15. Jager, M. F. et al. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl Acad. Sci. USA 114, 9558–9563 (2017).

    ADS  Google Scholar 

  16. Akama, T. et al. Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator. Sci. Rep. 7, 11967 (2017).

    ADS  Google Scholar 

  17. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Google Scholar 

  18. Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  19. Kasmi, L. et al. Effective mass effect in attosecond electron transport. Optica 4, 1492 (2017).

    ADS  Google Scholar 

  20. Ambrosio, M. J. & Thumm, U. Electronic structure effects in spatiotemporally resolved photoemission interferograms of copper surfaces. Phys. Rev. A 96, 051403 (2017).

    ADS  Google Scholar 

  21. Lucchini, M. et al. Light–matter interaction at surfaces in the spatiotemporal limit of macroscopic models. Phys. Rev. Lett. 115, 137401 (2015).

    ADS  Google Scholar 

  22. Swoboda, M. et al. Intensity dependence of laser-assisted attosecond photoionization spectra. Laser Phys. 19, 1591–1599 (2009).

    ADS  Google Scholar 

  23. Cho, B. I. et al. Electronic structure of warm dense copper studied by ultrafast X-ray absorption spectroscopy. Phys. Rev. Lett. 106, 167601 (2011).

    ADS  Google Scholar 

  24. Dorchies, F. et al. Time evolution of electron structure in femtosecond heated warm dense molybdenum. Phys. Rev. B 92, 144201 (2015).

    ADS  Google Scholar 

  25. Principi, E. et al. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti. Struct. Dyn. 3, 023604 (2016).

    Google Scholar 

  26. Williams, G. O. et al. Tracking the ultrafast XUV optical properties of X-ray free-electron-laser heated matter with high-order harmonics. Phys. Rev. A 97, 023414 (2018).

    ADS  Google Scholar 

  27. Locher, R. et al. Versatile attosecond beamline in a two-foci configuration for simultaneous time-resolved measurements. Rev. Sci. Instrum. 85, 013113 (2014).

    ADS  Google Scholar 

  28. Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U. & Rubio, A. Fundamentals of Time-Dependent Density Functional Theory 837 (Springer, 2012).

  29. Sommer, A. et al. Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534, 86–90 (2016).

    ADS  Google Scholar 

  30. Krasovskii, E. & Schattke, W. Local field effects in optical excitations of semicore electrons. Phys. Rev. B 60, 16251–16254 (1999).

    ADS  Google Scholar 

  31. Fuggle, J. C. & Mårtensson, N. Core-level binding energies in metals. J. Electron Spectros. Relat. Phenom. 21, 275–281 (1980).

    Google Scholar 

  32. Connerade, J. P. in Giant Resonances in Atoms, Molecules, and Solids Vol. 151 (eds Connerade, J. P., Esteva, J. M. & Karnatak, R. C.) 3–23 (Springer, 1987).

  33. Ankudinov, A. L., Nesvizhskii, A. I. & Rehr, J. J. Dynamic screening effects in X-ray absorption spectra. Phys. Rev. B 67, 115120 (2003).

    ADS  Google Scholar 

  34. Sato, S. A. et al. Role of intraband transitions in photocarrier generation. Phys. Rev. B 98, 035202 (2018).

    ADS  Google Scholar 

  35. Sato, S. A., Yabana, K., Shinohara, Y., Otobe, T. & Bertsch, G. F. Numerical pump–probe experiments of laser-excited silicon in nonequilibrium phase. Phys. Rev. B 89, 064304 (2014).

    ADS  Google Scholar 

  36. Bévillon, E., Colombier, J. P., Recoules, V. & Stoian, R. Free-electron properties of metals under ultrafast laser-induced electron–phonon nonequilibrium: a first-principles study. Phys. Rev. B 89, 115117 (2014).

    ADS  Google Scholar 

  37. Anisimov, V. I. & Gunnarsson, O. Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43, 7570–7574 (1991).

    ADS  Google Scholar 

  38. Bévillon, E. et al. Ultrafast switching of surface plasmonic conditions in nonplasmonic metals. Phys. Rev. B 93, 165416 (2016).

    ADS  Google Scholar 

  39. Winter, J., Rapp, S., Schmidt, M. & Huber, H. P. Ultrafast laser processing of copper: a comparative study of experimental and simulated transient optical properties. Appl. Surf. Sci. 417, 2–15 (2017).

    ADS  Google Scholar 

  40. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  Google Scholar 

  41. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    ADS  Google Scholar 

  42. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    ADS  Google Scholar 

  43. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1991–1997 (1991).

    ADS  Google Scholar 

  44. Reis, C., Pacheco, M. & Martins, J. First-principles norm-conserving pseudopotential with explicit incorporation of semicore states. Phys. Rev. B 68, 155111 (2003).

    ADS  Google Scholar 

  45. Andrade, X. et al. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 17, 31371–31396 (2015).

    Google Scholar 

  46. Sato, S. A., Shinohara, Y., Otobe, T. & Yabana, K. Dielectric response of laser-excited silicon at finite electron temperature. Phys. Rev. B 90, 174303 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with E. Krasovskii. S.A.S. and A.R. thank M. J. T. Oliveira for helping with the generation of a transferable pseudopotential for Ti, dealing with semicore electrons. This work was supported by the National Center of Competence in Research – Molecular Ultrafast Science and Technology (NCCR MUST) funded by the Swiss National Science Foundation. The authors acknowledge financial support from the European Research Council (ERC-2015-AdG-694097) and the European Union’s Horizon 2020 Research and Innovation programme under grant agreement no. 676580 (NOMAD). S.A.S. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.V., S.A.S., L.G., A.R. and U.K. supervised the study. M.V., F.S., N.H., L.K. and M.L. conducted the experiments. M.V. and F.S. analysed the experimental data. S.A.S. and A.R. developed the theoretical modelling. All authors were involved in the interpretation of data and contributed to the final manuscript.

Corresponding author

Correspondence to M. Volkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Pablo Maldonado and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, M., Sato, S.A., Schlaepfer, F. et al. Attosecond screening dynamics mediated by electron localization in transition metals. Nat. Phys. 15, 1145–1149 (2019). https://doi.org/10.1038/s41567-019-0602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0602-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing