Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cell-size threshold limits cell polarity and asymmetric division potential

Abstract

Reaction–diffusion networks underlie pattern formation in a range of biological contexts, from morphogenesis of organisms to the polarization of individual cells. One requirement for such molecular networks is that output patterns be scaled to system size. At the same time, kinetic properties of constituent molecules constrain the ability of networks to adapt to size changes. Here, we explore these constraints and the consequences thereof within the conserved PAR cell polarity network. Using the stem-cell-like germ lineage of the Caenorhabditis elegans embryo as a model, we find that the behaviour of PAR proteins fails to scale with cell size. Theoretical analysis demonstrates that this lack of scaling results in a size threshold below which polarity is destabilized, yielding an unpolarized system. In empirically constrained models, this threshold occurs near the size at which germ lineage cells normally switch between asymmetric and symmetric modes of division. Consistent with cell size limiting polarity and division asymmetry, genetic or physical reduction in germ lineage cell size is sufficient to trigger loss of polarity in normally polarizing cells at predicted size thresholds. Physical limits of polarity networks may be one mechanism by which cells read out geometrical features to inform cell fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The boundary interface in cell polarity models is defined by diffusive behaviour, not cell size.
Fig. 2: Membrane diffusion imposes a minimum cell-size threshold for stable polarization.
Fig. 3: PAR boundary gradients fail to scale with cell size.
Fig. 4: Reaction kinetics and diffusion rates of PAR proteins fail to scale with cell size.
Fig. 5: Decreased P3 cell size in small embryos destabilizes polarity and induces premature loss of division asymmetry.
Fig. 6: Premature loss of polarity and division asymmetry in P lineage cells derived from cell fragments.

Similar content being viewed by others

Data availability

All data are included in the manuscript or Supplementary material.

Code availability

All model-related code is available at https://github.com/lhcgeneva/PARmodelling. Code for analysis and tracking of particle trajectories is available at https://github.com/lhcgeneva/SPT. Tracking was performed using the trackpy package (https://doi.org/10.5281/zenodo.60550).

References

  1. Rose, L. & Gonczy, P. Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook http://www.wormbook.org/chapters/www_asymcelldiv.2/asymcelldiv.2.html (2014).

  2. Sulston, J., Schierenberg, E., White, J. & Thomson, J. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  Google Scholar 

  3. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    Article  Google Scholar 

  4. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  Google Scholar 

  5. Goehring, N. W. PAR polarity: from complexity to design principles. Exp. Cell Res. 328, 258–266 (2014).

    Article  Google Scholar 

  6. Motegi, F. et al. Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nat. Cell Biol. 13, 1361–1367 (2011).

    Article  Google Scholar 

  7. Goehring, N. W. et al. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334, 1137–1141 (2011).

    Article  ADS  Google Scholar 

  8. Gross, P. et al. Guiding self-organized pattern formation in cell polarity establishment. Nat. Phys. 15, 293–300 (2019).

    Article  Google Scholar 

  9. Reich, J. D. et al. Regulated activation of the PAR polarity network ensures a timely and specific response to spatial cues. Curr. Biol. 29, 1911–1923.e5 (2019).

    Article  Google Scholar 

  10. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 (1995).

    Article  Google Scholar 

  11. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133–3140 (1996).

    Google Scholar 

  12. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    Google Scholar 

  13. Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001).

    Article  Google Scholar 

  14. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  Google Scholar 

  15. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075–3084 (1996).

    Google Scholar 

  16. Hoege, C. et al. LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr. Biol. 20, 1296–1303 (2010).

    Article  Google Scholar 

  17. Beatty, A., Morton, D. & Kemphues, K. The C. elegans homolog of Drosophila lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo. Development 137, 3995–4004 (2010).

    Article  Google Scholar 

  18. Kumfer, K. T. et al. CGEF-1 and CHIN-1 regulate CDC-42 activity during asymmetric division in the Caenorhabditis elegans embryo. Mol. Biol. Cell 21, 266–277 (2010).

    Article  Google Scholar 

  19. Tostevin, F. & Howard, M. Modeling the establishment of PAR protein polarity in the one-cell C. elegans embryo. Biophys. J. 95, 4512–4522 (2008).

    Article  ADS  Google Scholar 

  20. Dawes, A. T. & Munro, E. M. PAR-3 oligomerization may provide an actin-independent mechanism to maintain distinct par protein domains in the early Caenorhabditis elegans embryo. Biophys. J. 101, 1412–1422 (2011).

    Article  ADS  Google Scholar 

  21. Goehring, N. W., Hoege, C., Grill, S. W. & Hyman, A. A. PAR proteins diffuse freely across the anterior-posterior boundary in polarized C. elegans embryos. J. Cell Biol. 193, 583–594 (2011).

    Article  Google Scholar 

  22. Sailer, A., Anneken, A., Li, Y., Lee, S. & Munro, E. Dynamic opposition of clustered proteins stabilizes cortical polarity in the C. elegans zygote. Dev. Cell 35, 131–142 (2015).

    Article  Google Scholar 

  23. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  24. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972).

    Article  Google Scholar 

  25. Levchenko, A. & Iglesias, P. A. Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63 (2002).

    Article  Google Scholar 

  26. Goryachev, A. B. & Pokhilko, A. V. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett. 582, 1437–1443 (2008).

    Article  Google Scholar 

  27. Mori, Y., Jilkine, A. & Edelstein-Keshet, L. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94, 3684–3697 (2008).

    Article  ADS  Google Scholar 

  28. Otsuji, M. et al. A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  29. Jilkine, A. & Edelstein-Keshet, L. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput. Biol. 7, e1001121 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  30. Halatek, J., Brauns, F. & Frey, E. Self-organization principles of intracellular pattern formation. Phil. Trans. R. Soc. B 373, 20170107 (2018).

    Article  Google Scholar 

  31. Trong, P. K., Nicola, E. M., Goehring, N. W., Kumar, K. V. & Grill, S. W. Parameter-space topology of models for cell polarity. New J. Phys. 16, 065009 (2014).

    Article  Google Scholar 

  32. Rodriguez, J. et al. aPKC cycles between functionally distinct par protein assemblies to drive cell polarity. Dev. Cell 42, 400–415 (2017).

    Article  Google Scholar 

  33. Hara, Y. & Kimura, A. Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo. Curr. Biol. 19, 1549–1554 (2009).

    Article  Google Scholar 

  34. Robin, F. B., McFadden, W. M., Yao, B. & Munro, E. M. Single-molecule analysis of cell surface dynamics in Caenorhabditis elegans embryos. Nat. Methods 11, 677–682 (2014).

    Article  Google Scholar 

  35. Schierenberg, E. Reversal of cellular polarity and early cell-cell interaction in the embryo of Caenorhabditis elegans. Dev. Biol. 122, 452–463 (1987).

    Article  Google Scholar 

  36. Homem, C. C. et al. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158, 874–888 (2014).

    Article  Google Scholar 

  37. Robinson, S. et al. Generation of spatial patterns through cell polarity switching. Science 333, 1436–1440 (2011).

    Article  ADS  Google Scholar 

  38. Roubinet, C. & Cabernard, C. Control of asymmetric cell division. Curr. Opin. Cell Biol. 31, 84–91 (2014).

    Article  Google Scholar 

  39. Grill, S. W., Gönczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

    Article  ADS  Google Scholar 

  40. Ou, G., Stuurman, N., D’Ambrosio, M. & Vale, R. D. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330, 677–680 (2010).

    Article  ADS  Google Scholar 

  41. Fuse, N., Hisata, K., Katzen, A. L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13, 947–954 (2003).

    Article  Google Scholar 

  42. Amodeo, A. A. & Skotheim, J. M. Cell-size control. Cold Spring Harb. Perspect. Biol. 8, a019083 (2016).

    Article  Google Scholar 

  43. Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123, 4201–4213 (2010).

    Article  Google Scholar 

  44. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    Google Scholar 

  45. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  ADS  Google Scholar 

  46. Shelton, C. A. & Bowerman, B. Time-dependent responses to glp-1-mediated inductions in early C. elegans embryos. Development 122, 2043–2050 (1996).

    Google Scholar 

  47. Yamamoto, K. & Kimura, A. An asymmetric attraction model for the diversity and robustness of cell arrangement in nematodes. Development 144, 4437–4449 (2017).

    Article  Google Scholar 

  48. Schenk, C., Bringmann, H., Hyman, A. A. & Cowan, C. R. Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos. Development 137, 1743–1753 (2010).

    Article  Google Scholar 

  49. Schindelin, J. et al. Fiji: an open source platform for biological image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  50. Allan, D., Caswell, T., Keim, N. & Van Der Wel, C. trackpy: Trackpy v0.3.2. Zenodo https://doi.org/10.5281/zenodo.60550 (2016).

  51. Dormand, J. & Prince, P. Family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980).

    Article  MathSciNet  Google Scholar 

  52. Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank N. Tapon, B. Baum, R. Endres, C. Weber, J. Pfanzelter, J. Bois and members of the Goehring Lab for critical comments, H. Baumann, B. Atkinson from Intelligent Imaging Innovations (3i), and R. Henriques for providing access to and training for a Marianas LightSheet microscope, the Salbreux Lab for helpful discussions, and T. Hyman and S. Grill, in whose laboratories some of the initial observations were made. This work was supported by the Francis Crick Institute (N.W.G.), which receives its core funding from Cancer Research UK (FC001086), the UK Medical Research Council (FC001086) and the Wellcome Trust (FC001086), the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 675407 (N.W.G.) and a Bogue Fellowship from University College London (L.H.). N.W.G. is a member of the GENiE network supported by COST Action BM1408 and EMBO. We also acknowledge the Santa Barbara Advanced School of Quantitative Biology and the Kavli Institute for Theoretical Physics, supported by NSF grant PHY-1748958, NIH grant R25GM067110 and the Gordon and Betty Moore Foundation grant 2919.01. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.H., N.W.G.; methodology, L.H., F.P., N.T.L.R.; software, L.H.; formal analysis, L.H., N.W.G.; investigation, L.H., F.P., J.D.R., N.H., R.I., N.W.G.; writing, L.H., N.W.G.; funding acquisition, N.W.G.; supervision, N.W.G.

Corresponding author

Correspondence to Nathan W. Goehring.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks James Feng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1–3.

Supplementary Information

Reporting Summary

Supplementary Video 1

Time evolution of the symmetric PAR model.

Supplementary Video 2

Time-lapse video of an embryo from the zygote stage until division of P4.

Supplementary Video 3

Time-lapse videos capturing P3 division in C27D9.1 (top) and ima-3 (bottom) embryos.

Supplementary Video 4

Time-lapse videos of dissected P0ex (left) and P1ex (right) cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubatsch, L., Peglion, F., Reich, J.D. et al. A cell-size threshold limits cell polarity and asymmetric division potential. Nat. Phys. 15, 1078–1085 (2019). https://doi.org/10.1038/s41567-019-0601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0601-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing