Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large linear-in-temperature resistivity in twisted bilayer graphene

Abstract

Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion1,2. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism3,4,5,6. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ, scales linearly with temperature, T, over a wide range of T before falling again owing to interband activation. The T-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Temperature dependence of resistivity in small-twist-angle tBLG devices.
Fig. 2: High-temperature behaviour of resistivity.
Fig. 3: T-linear resistivity in devices with different twist angles.
Fig. 4: Deviation from T-linear resistivity at low temperature.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  2. Surez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article  ADS  Google Scholar 

  3. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  5. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  Google Scholar 

  6. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1901.03520 (2019).

  7. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    Article  ADS  Google Scholar 

  8. Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    Article  ADS  Google Scholar 

  9. Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

    Article  ADS  Google Scholar 

  10. Choi, Y. W. & Choi, H. J. Strong electron–phonon coupling, electron–hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene. Phys. Rev. B 98, 241412 (2018).

    Article  ADS  Google Scholar 

  11. Allen, P. B. in Handbook of Superconductivity (eds Poole, C. P. Jr et al.) 478–489 (Academic Press, 2000).

  12. Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).

    Article  ADS  Google Scholar 

  13. Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

    Article  ADS  Google Scholar 

  14. Yudhistira, I. et al. Gauge-phonon dominated resistivity in twisted bilayer graphene near magic angle. Phys. Rev. B 99 , 140302(R) (2019).

  15. Kim, Y. et al. Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene. Nano Lett. 16, 5053–5059 (2016).

    Article  ADS  Google Scholar 

  16. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    Article  ADS  Google Scholar 

  17. Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article  ADS  Google Scholar 

  18. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).

    Article  Google Scholar 

  19. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  20. Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

    Article  ADS  Google Scholar 

  21. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  ADS  Google Scholar 

  22. Komatsu, K. Interpretation of the specific heat of various graphites at very low temperatures. J. Phys. Chem. Solids 25, 707–712 (1964).

    Article  ADS  Google Scholar 

  23. Bloch, F. Zum elektrischen widerstandsgesetz bei tiefen temperaturen. Z. Phys. 59, 208–214 (1930).

    Article  ADS  Google Scholar 

  24. Grüneisen, E. Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur. Ann. Phys. 408, 530–540 (1933).

    Article  Google Scholar 

  25. Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. W. Observation of a Bloch–Grüneisen regime in two-dimensional electron transport. Phys. Rev. B 41, 1278–1281 (1990).

    Article  ADS  Google Scholar 

  26. Gorkov, L. P. Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl Acad. Sci. USA 113, 4646–4651 (2016).

    Article  Google Scholar 

  27. McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).

    Article  ADS  Google Scholar 

  28. Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau level crossing. Phys. Rev. B 98, 035425 (2018).

    Article  ADS  Google Scholar 

  29. Wallbank, J. R. et al. Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nat. Phys. 15, 32–36 (2019).

    Article  Google Scholar 

  30. Bruin, J. A., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

    Article  ADS  Google Scholar 

  31. Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    Article  ADS  Google Scholar 

  32. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Preprint at https://arxiv.org/abs/1901.03710 (2019).

  33. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  Google Scholar 

  34. Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    Article  ADS  Google Scholar 

  35. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Das Sarma and F. Wu for sharing their unpublished theoretical results, and acknowledge further discussions with L. Balents and T. Senthil. Work at both Columbia and UCSB was funded by the Army Research Office under award W911NF-17-1-0323. Sample device design and fabrication was partially supported by DoE Pro-QM EFRC (DE-SC0019443). A.F.Y. and C.R.D. separately acknowledge the support of the David and Lucile Packard Foundation. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST. A portion of this work was carried out at the KITP, Santa Barbara, supported by the National Science Foundation under grant number NSF PHY-1748958.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., S.C., H.P. and Y.Z. fabricated the devices. H.P., M.Y. and S.C. performed the measurements and analysed the data. K.W. and T.T. grew the hexagonal boron nitride crystals. C.R.D. and A.F.Y. advised on the experiments. The manuscript was written with input from all authors.

Corresponding authors

Correspondence to Cory R. Dean or Andrea F. Young.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and ref. 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polshyn, H., Yankowitz, M., Chen, S. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019). https://doi.org/10.1038/s41567-019-0596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0596-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing